Artificial Intelligence, Machine Learning, and Deep Learning

Share:

EmailFacebookLinkedInXWhatsAppShare
Supports the design and development of artificial intelligence, machine learning, and deep learning to enhance analysis of complex medical images and data.

Emphasis

The emphasis is on development of transformative machine intelligence-based systems, emerging tools, and modern technologies for diagnosing and recommending treatments for a range of diseases and health conditions.  Unsupervised and semi-supervised techniques and methodologies are of particular interest.

Program priorities and areas of interest:

  • clinical decision support systems
  • computer-aided diagnosis
  • computer-aided screening
  • analyzing complex patterns and images
  • screening for diseases
  • natural-language processing and understanding
  • medical decision-making
  • predictive modeling
  • computer vision
  • robotic and image guided surgery
  • personalized imaging and treatment
  • drug discovery
  • radiomics
  • machine/deep learning-based segmentation, registration, etc.

Additional support

This program also supports:

  • early-stage development of software, tools, and reusable convolutional neural networks
  • data reduction, denoising, improving performance (health-promoting apps), and deep-learning based direct image reconstruction
  • approaches that facilitate interoperability among annotations used in image training databases

    Related News

    October 28, 2024

    A team of engineers at the University of Houston has published a study in the journal Nature on how international air travel has influenced the spread of COVID-19 around the world. By using a newly developed AI tool, the team identified hotspots of infection linked to air traffic, pinpointing key areas that significantly contribute to disease transmission. Source: University of Houston Newsroom

    October 28, 2024

    Researchers at Washington University Medicine have reduced scar formation and improved heart function in mouse models of heart failure using a monoclonal antibody treatment. The antibody that reduces inflammation could serve as cardio-immunotherapy for heart failure patients.  Source: WashU Medicine  

    October 24, 2024

    The University of Chicago Pritzker School of Molecular Engineering (PME) has solved a challenge that has long stymied researchers, reimagining the process of creating hydrogels to build a powerful semiconductor in hydrogel form that can be used to create better brain-machine interfaces, biosensors, and pacemakers. Source: UChicago Pritzker School of Molecular Engineering News.

    October 21, 2024
    A headshot of Kaitlyn Sadtler at the TIME100 Next Gala 2024. Credit: Leonardo Munoz/AFP via Getty Images

    NIBIB bioengineer Kaitlyn Sadtler has flourished as a leader of many impactful, interdisciplinary studies. For her role in shaping the future of medical research, TIME magazine has named Kaitlyn Sadtler to the TIME100 Next 2024 List.

    October 21, 2024

    A team of researchers at Penn State College of Medicine and collaborators from five institutes have developed a new 3D atlas of developing mice brains using advanced imaging and microscopy techniques. The new high-resolution maps of the mouse brain will help advance the understanding of brain development and the study of neurodevelopment disorders. 

    Source: Penn State Research News