Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia
- PMID: 31287994
- DOI: 10.1016/j.ccell.2019.06.003
Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia
Abstract
To identify therapeutic targets in acute myeloid leukemia (AML), we chemically interrogated 200 sequenced primary specimens. Mubritinib, a known ERBB2 inhibitor, elicited strong anti-leukemic effects in vitro and in vivo. In the context of AML, mubritinib functions through ubiquinone-dependent inhibition of electron transport chain (ETC) complex I activity. Resistance to mubritinib characterized normal CD34+ hematopoietic cells and chemotherapy-sensitive AMLs, which displayed transcriptomic hallmarks of hypoxia. Conversely, sensitivity correlated with mitochondrial function-related gene expression levels and characterized a large subset of chemotherapy-resistant AMLs with oxidative phosphorylation (OXPHOS) hyperactivity. Altogether, our work thus identifies an ETC complex I inhibitor and reveals the genetic landscape of OXPHOS dependency in AML.
Keywords: NADH dehydrogenase inhibitor; acute myeloid leukemia; electron transport chain complex I; metabolism; mitochondrial respiration; oxidative phosphorylation; personalized medicine; therapeutic target.
Copyright © 2019 Elsevier Inc. All rights reserved.
Similar articles
-
Targeting mitochondrial RNA polymerase in acute myeloid leukemia.Oncotarget. 2015 Nov 10;6(35):37216-28. doi: 10.18632/oncotarget.6129. Oncotarget. 2015. PMID: 26484416 Free PMC article.
-
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.Cancer Discov. 2017 Jul;7(7):716-735. doi: 10.1158/2159-8290.CD-16-0441. Epub 2017 Apr 17. Cancer Discov. 2017. PMID: 28416471 Free PMC article.
-
Acute myeloid leukemia sensitivity to metabolic inhibitors: glycolysis showed to be a better therapeutic target.Med Oncol. 2020 Jul 28;37(8):72. doi: 10.1007/s12032-020-01394-6. Med Oncol. 2020. PMID: 32725458
-
Targeting mitochondrial respiration for the treatment of acute myeloid leukemia.Biochem Pharmacol. 2020 Dec;182:114253. doi: 10.1016/j.bcp.2020.114253. Epub 2020 Oct 2. Biochem Pharmacol. 2020. PMID: 33011159 Free PMC article. Review.
-
Mitochondrial metabolism: powering new directions in acute myeloid leukemia.Leuk Lymphoma. 2021 Oct;62(10):2331-2341. doi: 10.1080/10428194.2021.1910685. Epub 2021 Jun 1. Leuk Lymphoma. 2021. PMID: 34060970 Review.
Cited by
-
The role of mitochondrial proteases in leukemic cells and leukemic stem cells.Stem Cells Transl Med. 2020 Dec;9(12):1481-1487. doi: 10.1002/sctm.20-0142. Epub 2020 Aug 5. Stem Cells Transl Med. 2020. PMID: 32761807 Free PMC article.
-
Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors.Cell Stem Cell. 2021 Mar 4;28(3):378-393. doi: 10.1016/j.stem.2021.02.013. Cell Stem Cell. 2021. PMID: 33667359 Free PMC article. Review.
-
Inducing respiratory complex I impairment elicits an increase in PGC1α in ovarian cancer.Sci Rep. 2022 May 16;12(1):8020. doi: 10.1038/s41598-022-11620-y. Sci Rep. 2022. PMID: 35577908 Free PMC article.
-
Identification of the Cysteine Protease Legumain as a Potential Chronic Hypoxia-Specific Multiple Myeloma Target Gene.Cells. 2022 Jan 15;11(2):292. doi: 10.3390/cells11020292. Cells. 2022. PMID: 35053409 Free PMC article.
-
Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia.Nat Commun. 2022 May 19;13(1):2801. doi: 10.1038/s41467-022-30396-3. Nat Commun. 2022. PMID: 35589701 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous