Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor
- PMID: 18483393
- DOI: 10.1182/blood-2007-11-125476
Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor
Abstract
In acute myeloid leukemia (AML), internal tandem duplications (ITDs) of the juxtamembrane (JM) of FLT3 have been shown to play a crucial role in driving proliferation and survival of the leukemic clone. Here, we report the identification of FLT3_ITD mutations located in non-JM domains of the FLT3-receptor. This novel type of FLT3_ITD mutation was found in 216 of 753 (28.7%) of unselected FLT3_ITD-positive AML cases. An FLT3 receptor harbouring a prototypic non-JM ITD (FLT3_ITD627E) mediated constitutive phosphorylation of FLT3 and of STAT5, suggesting that non-JM ITDs confer constitutive activation of the receptor. FLT3_ITD627E induced transformation of hematopoietic 32D cells and led to a lethal myeloproliferative disease in a syngeneic mouse model. Our results indicate that a significant proportion of activating FLT3_ITD mutations is not confined to the JM domain of FLT3. Further studies are warranted to define the biologic and clinical characteristics of non-JM ITDs.
Comment in
-
Fathoming flt3.Blood. 2009 Apr 23;113(17):3889-90. doi: 10.1182/blood-2009-02-205435. Blood. 2009. PMID: 19389891 No abstract available.
Similar articles
-
Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML.Blood. 2006 May 1;107(9):3700-7. doi: 10.1182/blood-2005-06-2596. Epub 2006 Jan 12. Blood. 2006. PMID: 16410449
-
Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation.Ann Hematol. 2018 May;97(5):773-780. doi: 10.1007/s00277-018-3245-5. Epub 2018 Jan 25. Ann Hematol. 2018. PMID: 29372308 Free PMC article.
-
Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD.Blood. 2006 Aug 15;108(4):1339-45. doi: 10.1182/blood-2005-11-011429. Epub 2006 Apr 20. Blood. 2006. PMID: 16627759 Free PMC article.
-
From kinases to cancer: leakiness, loss of autoinhibition and leukemia.Cell Cycle. 2006 Mar;5(6):599-602. doi: 10.4161/cc.5.6.2586. Epub 2006 Mar 15. Cell Cycle. 2006. PMID: 16582613 Review.
-
Role of FLT3 in leukemia.Curr Opin Hematol. 2002 Jul;9(4):274-81. doi: 10.1097/00062752-200207000-00003. Curr Opin Hematol. 2002. PMID: 12042700 Review.
Cited by
-
Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival.Front Pediatr. 2020 Sep 16;8:586. doi: 10.3389/fped.2020.00586. eCollection 2020. Front Pediatr. 2020. PMID: 33042924 Free PMC article.
-
Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPα.J Clin Invest. 2012 Aug;122(8):2955-66. doi: 10.1172/JCI43354. Epub 2012 Jul 17. J Clin Invest. 2012. PMID: 22797303 Free PMC article.
-
The Biology and Targeting of FLT3 in Pediatric Leukemia.Front Oncol. 2014 Sep 23;4:263. doi: 10.3389/fonc.2014.00263. eCollection 2014. Front Oncol. 2014. PMID: 25295230 Free PMC article. Review.
-
NOX4-driven ROS formation mediates PTP inactivation and cell transformation in FLT3ITD-positive AML cells.Leukemia. 2016 Feb;30(2):473-83. doi: 10.1038/leu.2015.234. Epub 2015 Aug 26. Leukemia. 2016. PMID: 26308771
-
Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia.Stem Cell Investig. 2017 Jun 2;4:48. doi: 10.21037/sci.2017.05.04. eCollection 2017. Stem Cell Investig. 2017. PMID: 28607922 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous