Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3261–3267. doi: 10.1128/aem.63.8.3261-3267.1997

Quantitative fluorescence in situ hybridization of Aureobasidium pullulans on microscope slides and leaf surfaces.

S Li 1, R N Spear 1, J H Andrews 1
PMCID: PMC168625  PMID: 9251214

Abstract

A 21-mer oligonucleotide probe designated Ap665, directed at the 18S rRNA of Aureobasidium pullulans and labelled with five molecules of fluorescein isothiocyanate, was applied by fluorescence in situ hybridization (FISH) to populations of the fungus on slides and apple leaves from growth chamber seedlings and orchard trees. In specificity tests that included Ap665 and a similarly labelled universal probe and the respective complementary probes as controls, the hybridization signal was strong for Ap665 reactions with 12 A. pullulans strains but at or below background level for 98 other fungi including 82 phylloplane isolates. Scanning confocal laser microscopy was used to confirm that the fluorescence originated from the cytoplasmic matrix and to overcome limitations imposed on conventional microscopy by leaf topography. Images were recorded with a cooled charge-coupled device video camera and digitized for storage and manipulation. Image analysis was used to verify semiquantitative fluorescence ratings and to demonstrate how the distribution of the fluorescence signal in specific interactions (e.g., Ap665 with A. pullulans cells) could be separated at a given probability level from nonspecific fluorescence (e.g., in interactions of Ap665 with Cryptococcus laurentii cells) of an overlapping population. Image analysis methods were used also to quantify epiphytic A. pullulans populations based on cell number or percent coverage of the leaf surface. Under some conditions, leaf autofluorescence and the release of fluorescent compounds by leaves during the processing for hybridization decreased the signal-to-noise ratio. These effects were reduced by the use of appropriate excitation filter sets and fixation conditions. We conclude that FISH can be used to detect and quantify A. pullulans cells in the phyllosphere.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Assmus B., Hutzler P., Kirchhof G., Amann R., Lawrence J. R., Hartmann A. In Situ Localization of Azospirillum brasilense in the Rhizosphere of Wheat with Fluorescently Labeled, rRNA-Targeted Oligonucleotide Probes and Scanning Confocal Laser Microscopy. Appl Environ Microbiol. 1995 Mar;61(3):1013–1019. doi: 10.1128/aem.61.3.1013-1019.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COOKE W. B., MATSUURA G. PHYSIOLOGICAL STUDIES IN THE BLACK YEASTS. Mycopathol Mycol Appl. 1963 Dec 30;21:225–271. doi: 10.1007/BF02052579. [DOI] [PubMed] [Google Scholar]
  6. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  7. Drahos D. J. Field testing of genetically engineered microorganisms. Biotechnol Adv. 1991;9(2):157–171. doi: 10.1016/0734-9750(91)90001-c. [DOI] [PubMed] [Google Scholar]
  8. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. doi: 10.1128/jb.170.2.720-726.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Langendijk P. S., Schut F., Jansen G. J., Raangs G. C., Kamphuis G. R., Wilkinson M. H., Welling G. W. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol. 1995 Aug;61(8):3069–3075. doi: 10.1128/aem.61.8.3069-3075.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li S., Cullen D., Hjort M., Spear R., Andrews J. H. Development of an oligonucleotide probe for Aureobasidium pullulans based on the small-subunit rRNA gene. Appl Environ Microbiol. 1996 May;62(5):1514–1518. doi: 10.1128/aem.62.5.1514-1518.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lim E. L., Caron D. A., Delong E. F. Development and field application of a quantitative method for examining natural assemblages of protists with oligonucleotide probes. Appl Environ Microbiol. 1996 Apr;62(4):1416–1423. doi: 10.1128/aem.62.4.1416-1423.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Poulsen L. K., Ballard G., Stahl D. A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993 May;59(5):1354–1360. doi: 10.1128/aem.59.5.1354-1360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Soll D. R., Bromberg R., Sonneborn D. R. Zoospore germination in the water mold. Blastocladiella emersonii. I. Measurement of germination and sequence of subcellular morphological changes. Dev Biol. 1969 Sep;20(3):183–217. doi: 10.1016/0012-1606(69)90012-8. [DOI] [PubMed] [Google Scholar]
  14. Tkachuk D. C., Pinkel D., Kuo W. L., Weier H. U., Gray J. W. Clinical applications of fluorescence in situ hybridization. Genet Anal Tech Appl. 1991 Apr;8(2):67–74. doi: 10.1016/1050-3862(91)90051-r. [DOI] [PubMed] [Google Scholar]
  15. Trask B. J. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1991 May;7(5):149–154. doi: 10.1016/0168-9525(91)90378-4. [DOI] [PubMed] [Google Scholar]
  16. Uzawa S., Yanagida M. Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J Cell Sci. 1992 Feb;101(Pt 2):267–275. doi: 10.1242/jcs.101.2.267. [DOI] [PubMed] [Google Scholar]
  17. Wallner G., Amann R., Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14(2):136–143. doi: 10.1002/cyto.990140205. [DOI] [PubMed] [Google Scholar]
  18. de Hoog G. S., Yurlova N. A. Conidiogenesis, nutritional physiology and taxonomy of Aureobasidium and Hormonema. Antonie Van Leeuwenhoek. 1994;65(1):41–54. doi: 10.1007/BF00878278. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES