Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci with predominant effects in brain regions associated with addiction

Abstract

Despite an estimated heritability of ~50%, genome-wide association studies of opioid use disorder (OUD) have revealed few genome-wide significant loci. We conducted a cross-ancestry meta-analysis of OUD in the Million Veteran Program (Nā€‰=ā€‰425,944). In addition to known exonic variants in OPRM1 and FURIN, we identified intronic variants in RABEPK, FBXW4, NCAM1 and KCNN1. A meta-analysis including other datasets identified a locus in TSNARE1. In total, we identified 14 loci for OUD, 12 of which are novel. Significant genetic correlations were identified for 127 traits, including psychiatric disorders and other substance use-related traits. The only significantly enriched cell-type group was CNS, with gene expression enrichment in brain regions previously associated with substance use disorders. These findings increase our understanding of the biological basis of OUD and provide further evidence that it is a brain disease, which may help to reduce stigma and inform efforts to address the opioid epidemic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan and quantileā€“quantile plot for cross-ancestry meta-analysis of opioid use disorder (Ncasesā€‰=ā€‰31,480 and Ncontrolsā€‰=ā€‰394,484).
Fig. 2: Enrichment of opioid use disorder in the brain.
Fig. 3: Phenotypic spectrum associated with opioid use disorder.
Fig. 4: Genomic SEM analysis of OUD with other substance use traits and psychiatric disorders.

Similar content being viewed by others

Data availability

The full summary-level association data from the meta-analysis are available through dbGaP at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.

Code availability

Imputation was performed using Minimac3 (https://genome.sph.umich.edu/wiki/Minimac3). GWAS was performed using PLINK2 (https://www.cog-genomics.org/plink2). Meta-analyses were performed using METAL (https://genome.sph.umich.edu/wiki/METAL_Documentation). GCTA (https://cnsgenomics.com/software/gcta/#Overview) was used for identification of independent loci (GCTA-COJO) and gene-based analysis (GCTA-fastBAT). FUMA (https://fuma.ctglab.nl/) was used for gene association, functional enrichment and gene-set enrichment analyses. Transcriptomic analyses were performed using S-PrediXcan and S-MultiXcan (https://github.com/hakyimlab/MetaXcan). LDSC (https://github.com/bulik/ldsc) was used for heritability estimation, genetic correlation analysis (also using the CTG-VL; https://genoma.io) and heritability enrichment analyses. Trans-ancestry genetic correlation was estimated using Popcorn (https://github.com/brielin/Popcorn). PRS analyses were performed using PRS-CS (https://github.com/getian107/PRScs). PheWAS analyses were run using the PheWAS R package (https://github.com/PheWAS/PheWAS). The MendelianRandomization R package (https://cran.r-project.org/web/packages/MendelianRandomization/index.html) was used for MR analyses. Genomic SEM was conducted using the GenomicsSEM R package (https://github.com/GenomicSEM/GenomicSEM).

References

  1. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013); https://doi.org/10.1176/appi.books.9780890425596

  2. Strang, J. et al. Opioid use disorder. Nat. Rev. Dis. Primers 6, 3 (2020).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Vowles, K. E. et al. Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. Pain 156, 569ā€“576 (2015).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Centers for Disease Control and Prevention Vital signs: overdoses of prescription opioid pain relievers and other drugs among womenā€“United States, 1999ā€“2010. MMWR Morb. Mortal. Wkly Rep. 62, 537ā€“542 (2013).

  5. Key Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health (Substance Abuse and Mental Health Services Administration, 2020); https://www.samhsa.gov/data/sites/default/files/reports/rpt29393/2019NSDUHFFRPDFWHTML/2019NSDUHFFR090120.htm

  6. Wilson, N. Drug and opioid-involved overdose deathsā€”United States, 2017ā€“2018. MMWR Morb. Mortal. Wkly Rep. 69, 290ā€“297 (2020).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Kendler, K. S., Jacobson, K. C., Prescott, C. A. & Neale, M. C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry 160, 687ā€“695 (2003).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Gelernter, J. et al. Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol. Psychiatry 76, 66ā€“74 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Cheng, Z. et al. Genome-wide association study identifies a regulatory variant of rgma associated with opioid dependence in European Americans. Biol. Psychiatry 84, 762ā€“770 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Nelson, E. C. et al. Evidence of CNIH3 involvement in opioid dependence. Mol. Psychiatry 21, 608ā€“614 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Polimanti, R. et al. Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Mol. Psychiatry 25, 1673ā€“1687 (2020).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Song, W. et al. Genome-wide association analysis of opioid use disorder: a novel approach using clinical data. Drug Alcohol Depend. 217, 108276 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Zhou, H. et al. Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry 77, 1072ā€“1080 (2020).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Deak, J. D. et al. Genome-wide association study and multi-trait analysis of opioid use disorder identifies novel associations in 639,709 individuals of European and African ancestry. Mol. Psychiatry https://doi.org/10.1038/s41380-022-01709-1 (2022).

  15. Sanchez-Roige, S. et al. Genome-wide association study of problematic opioid prescription use in 132,113 23andMe research participants of European ancestry. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01335-3 (2021).

  16. Gaddis, N. et al. Multi-trait genome-wide association study of opioid addiction: OPRM1 and beyond. Preprint at medRxiv https://doi.org/10.1101/2021.09.13.21263503v1 (2021).

  17. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228ā€“1235 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318ā€“1330 (2020).

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025 (2010).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 15, e1007889 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291ā€“295 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Cuellar-Partida, G. et al. Complex-Trait Genetics Virtual Lab: a community-driven web platform for post-GWAS analyses. Preprint at bioRxiv https://doi.org/10.1101/518027 (2019).

  25. Crist, R. C. & Berrettini, W. H. Pharmacogenetics of OPRM1. Pharmacol. Biochem. Behav. 123, 25ā€“33 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Crist, R. C., Reiner, B. C. & Berrettini, W. H. A review of opioid addiction genetics. Curr. Opin. Psychol. 27, 31ā€“35 (2019).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Moningka, H., Lichenstein, S. & Yip, S. W. Current understanding of the neurobiology of opioid use disorder: an overview. Curr. Behav. Neurosci. Rep. 6, 1ā€“11 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Gelernter, J., Kranzler, H. & Cubells, J. Genetics of two mu opioid receptor gene (OPRM1) exon I polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects. Mol. Psychiatry 4, 476ā€“483 (1999).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884ā€“D891 (2021).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Zhang, H. et al. Association between two Āµ-opioid receptor gene (OPRM1) haplotype blocks and drug or alcohol dependence. Hum. Mol. Genet. 15, 807ā€“819 (2006).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Breslin, M. B. et al. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J. Biol. Chem. 268, 27084ā€“27093 (1993).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Christakoudi, S., Evangelou, E., Riboli, E. & Tsilidis, K. K. GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Sci. Rep. 11, 10688 (2021).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237ā€“244 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Grice, D. E. et al. Transcriptional profiling of C57 and DBA strains of mice in the absence and presence of morphine. BMC Genomics 8, 76 (2007).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Yu, L. et al. Activity in projection neurons from prelimbic cortex to the PVT is necessary for retrieval of morphine withdrawal memory. Cell Rep. 35, 108958 (2021).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Fujita-Hamabe, W., Nakamoto, K. & Tokuyama, S. Involvement of NCAM and FGF receptor signaling in the development of analgesic tolerance to morphine. Eur. J. Pharmacol. 672, 77ā€“82 (2011).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Yang, B.-Z. et al. Association of haplotypic variants in DRD2, ANKK1, TTC12 and NCAM1 to alcohol dependence in independent case control and family samples. Hum. Mol. Genet. 16, 2844ā€“2853 (2007).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Yang, B.-Z. et al. Haplotypic variants in DRD2, ANKK1, TTC12 and NCAM1 are associated with comorbid alcohol and drug dependence. Alcohol. Clin. Exp. Res. 32, 2117ā€“2127 (2008).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Pasman, J. A. et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat. Neurosci. 21, 1161ā€“1170 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52, 680ā€“691 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112ā€“1121 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Amare, A. T. et al. Bivariate genome-wide association analyses of the broad depression phenotype combined with major depressive disorder, bipolar disorder or schizophrenia reveal eight novel genetic loci for depression. Mol. Psychiatry 25, 1420ā€“1429 (2020).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Koob, G. F. Neurobiology of opioid addiction: opponent process, hyperkatifeia and negative reinforcement. Biol. Psychiatry 87, 44ā€“53 (2020).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Leshner, A. I. Addiction is a brain disease, and it matters. Science 278, 45ā€“47 (1997).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Karlsson LinnĆ©r, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367ā€“1376 (2021).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  46. Vanyukov, M. M. et al. Common liability to addiction and ā€˜gateway hypothesisā€™: Theoretical, empirical and evolutionary perspective. Drug Alcohol Depend. 123, S3ā€“S17 (2012).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469ā€“1482 (2019).

  48. Howell, B. A. et al. Validity of incident opioid use disorder (OUD) diagnoses in administrative data: a chart verification study. J. Gen. Intern. Med. 36, 1264ā€“1270 (2021).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214ā€“223 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  50. Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284ā€“1287 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68ā€“74 (2015).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  53. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763ā€“772 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

  55. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190ā€“2191 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76ā€“82 (2011).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52ā€“58 (2010).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621ā€“629 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045ā€“1048 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  61. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Bakshi, A. et al. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci. Rep. 6, 32894 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 22, 49 (2021).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481ā€“487 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204ā€“213 (2017).

    ArticleĀ  Google ScholarĀ 

  66. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442ā€“1453 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  67. Ng, B. et al. An xQTL map integrates the genetic architecture of the human brainā€™s transcriptome and epigenome. Nat. Neurosci. 20, 1418ā€“1426 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Freshour, S. L. et al. Integration of the Drugā€“Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144ā€“D1151 (2021).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76ā€“88 (2016).

  70. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Dennis, J. K. et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med. 13, 6 (2021).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513ā€“525 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Zhou, H. et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 23, 809ā€“818 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032ā€“1045 (2020).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421ā€“427 (2014).

  76. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817ā€“829 (2021).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343ā€“352 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431ā€“444 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63ā€“75 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Yu, D. et al. Interrogating the genetic determinants of Touretteā€™s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217ā€“227 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181ā€“1188 (2018).

Download references

Acknowledgements

This work was supported by Merit Review Awards from the US Department of Veterans Affairs Biomedical Laboratory Research and Development Service (no. I01 BX003341 (to A.C.J. and H.R.K.)) and Clinical Science Research and Development Service (no. I01 CX001734 (to K.M.K.)); the VISN 4 Mental Illness Research, Education and Clinical Center (to H.R.K.); NIAAA grant K01 AA028292 (to R.L.K.); and NIDA grant DA046345 (to H.R.K.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The views expressed in this article are those of the authors and do not necessarily represent the position or policy of the Department of Veterans Affairs or the US Government.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

R.L.K., H.X. and H.R.K. conceived analyses. R.L.K. and H.R.K. wrote the first draft and prepared all drafts for submission; R.L.K. accomplished primary analyses; H.X., S.T., M.N. and H.Z. conducted additional analyses; R.L.K., L.K.D., S.S.-R. and J.G. supervised additional analyses; R.V.-S., E.E.H., C.T.R., M.N., L.K.D. and S.S.-R. provided critical support regarding phenotypes and data in individual datasets; and K.M.K., A.C.J. and H.R.K. provided resource support. All authors reviewed the manuscript and approved it for submission.

Corresponding author

Correspondence to Henry R. Kranzler.

Ethics declarations

Competing interests

H.R.K. is a member of advisory boards for Dicerna Pharmaceuticals, Sophrosyne Pharmaceuticals and Enthion Pharmaceuticals; a consultant to Sobrera Pharmaceuticals; the recipient of research funding and medication supplies for an investigator-initiated study from Alkermes, and a member of the American Society of Clinical Psychopharmacologyā€™s Alcohol Clinical Trials Initiative, which was supported in the last three years by Alkermes, Dicerna, Ethypharm, Lundbeck, Mitsubishi and Otsuka. J.G. and H.R.K. are holders of US patent no. 10,900,082 titled: ā€˜Genotype-guided dosing of opioid agonists,ā€™ issued 26 January 2021. The other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Ditte Demontis and Andrew McIntosh for their contribution to the peer review of this work.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kember, R.L., Vickers-Smith, R., Xu, H. et al. Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci with predominant effects in brain regions associated with addiction. Nat Neurosci 25, 1279ā€“1287 (2022). https://doi.org/10.1038/s41593-022-01160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01160-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing