Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type

Abstract

Post-translational modification with the ubiquitin-related protein SUMO1 requires the E1 enzyme Aos1–Uba2 and the E2 enzyme Ubc9. Distinct E3 ligases strongly enhance modification of specific targets. The SUMO E3 ligase RanBP2 (also known as Nup358) has no obvious similarity to RING- or HECT-type enzymes. Here we show that RanBP2's 30-kDa catalytic fragment is a largely unstructured protein. Despite two distinct but partially overlapping 79-residue catalytic domains, one of which is sufficient for maximal activity, RanBP2 binds to Ubc9 in a 1:1 stoichiometry. The identification of nine RanBP2 and three Ubc9 side chains that are important for RanBP2-dependent SUMOylation indicates largely hydrophobic interactions. These properties distinguish RanBP2 from all other known E3 ligases, and we speculate that RanBP2 exerts its catalytic effect by altering Ubc9's properties rather than by mediating target interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Automodification and E3 ligase activity of RanBP2 deletion fragments.
Figure 2: Ubc9 interacts with IR1 and more stably with IR1+M.
Figure 3: IR1+M catalyzes Sp100 SUMOylation efficiently.
Figure 4: Shorter RanBP2 fragments have reduced target specificity.
Figure 5: Cysteine mutants of IR1 have residual ligase activity.
Figure 6: RanBP2 mutants defective for activity and Ubc9 binding.
Figure 7: Ubc9 mutants defective in RanBP2-dependent modification.
Figure 8: IR1+M and M+IR2 are both highly active in Sp100 SUMOylation.
Figure 9: The largely unstructured BP2ΔFG binds Ubc9 in a 1:1 stoichiometry.
Figure 10

Similar content being viewed by others

References

  1. Melchior, F. SUMO—nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Müller, S., Hoege, C., Pyrowolakis, G. & Jentsch, S. SUMO, ubiquitin's mysterious cousin. Nat. Rev. Mol. Cell Biol. 2, 202–210 (2001).

    Article  PubMed  Google Scholar 

  3. Kim, K.I., Baek, S.H. & Chung, C.H. Versatile protein tag, SUMO: its enzymology and biological function. J. Cell Physiol. 191, 257–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO. EMBO Rep. 4, 137–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. 10, 335–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz, D.C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328 (2003).

    Article  Google Scholar 

  10. Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2, 169–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Cyr, D.M., Hohfeld, J. & Patterson, C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem. Sci. 27, 368–375 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Fang, S., Lorick, K.L., Jensen, J.P. & Weissman, A.M. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin. Cancer Biol. 13, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hatakeyama, S. & Nakayama, K.I. U-box proteins as a new family of ubiquitin ligases. Biochem. Biophys. Res. Commun. 302, 635–645 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Deshaies, R.J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Peters, J.M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt, D. & Muller, S. PIAS/SUMO: new partners in transcriptional regulation. Cell. Mol. Life Sci. 60, 2561–2574 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kagey, M.H., Melhuish, T.A. & Wotton, D. The polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21, 2682–2691 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, J., Matunis, M.J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Matunis, M.J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc. Natl. Acad. Sci. USA 94, 3736–3741 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saitoh, H., Pizzi, M.D. & Wang, J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem. 277, 4755–4763 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kahyo, T., Nishida, T. & Yasuda, H. Involvement of PIAS1 in the SUMOylation of tumor suppressor p53. Mol. Cell 8, 713–718 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. USA 99, 2872–2877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, P.Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wyatt, P.J. Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta 272, 1–40 (1993).

    Article  CAS  Google Scholar 

  31. Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Gmachl, M., Gieffers, C., Podtelejnikov, A.V., Mann, M. & Peters, J.M. The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 97, 8973–8978 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leverson, J.D. et al. The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol. Biol. Cell 11, 2315–2325 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, Z. et al. APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol. Biol. Cell 12, 3839–3851 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seeler, J.S. et al. Common properties of nuclear body protein SP100 and TIF1α chromatin factor: role of SUMO modification. Mol. Cell. Biol. 21, 3314–3324 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sapetschnig, A. et al. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 21, 5206–5215 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong, H., Hateboer, G., Perrakis, A., Bernards, R. & Sixma, T.K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our special thanks go to A. Klanner, J. Vordemann, P. van Dijk and E. Stieger for excellent technical assistance, to members of the lab and L. Hengst for sharing reagents and advice. We acknowledge L. Moroder and E. Weyher (Max Planck Institute for Biochemistry) for CD spectroscopy, and J. Velgaard Olsen (University of Southern Denmark) for mass spectrometry analysis. We thank J. Seeler, A. Dejean, R. Grosschedl, G. Suske, M. Oren and C. Lima for providing clones for GST-Sp100, GST-HDAC4, His-Lef-1, GST-PIAS1, GST-p53, and His-Ubc9, respectively. Funding was provided by BioFUTURE grant 0311869 to F.M.; P.K. was funded through grant NWO-MW901-02-223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke Melchior.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

N85Q Ubc9 in thioester bond formation and sumoylation. (PDF 72 kb)

Supplementary Fig. 2

Molecular mass of the RanBP2–Ubc9 complex. (PDF 57 kb)

Supplementary Fig. 3

Activity and binding for different RanBP2 fragments. (PDF 40 kb)

Supplementary Fig. 4

Sequence alignment of RanBP2's E3 ligase domain. (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichler, A., Knipscheer, P., Saitoh, H. et al. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat Struct Mol Biol 11, 984–991 (2004). https://doi.org/10.1038/nsmb834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing