Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular α-synuclein—a novel and crucial factor in Lewy body diseases

Key Points

  • Neurons secrete monomeric and oligomeric α-synuclein through unconventional exocytosis

  • Extracellular α-synuclein is taken up by neurons and glia through endocytosis and undergoes endocytic trafficking for degradation in lysosomes

  • α-Synuclein aggregates can be transmitted from neuron to neuron via the extracellular milieu and can propagate aggregates by a 'seeding' mechanism

  • Extracellular α-synuclein oligomers activate microglia via activation of Toll-like receptor 2

  • Targeting of extracellular α-synuclein—for example, promoting its clearance—might be a promising therapeutic strategy for modifying the progression of Lewy body diseases

Abstract

Misfolding and intracellular aggregation of α-synuclein are thought to be crucial factors in the pathogenesis of Lewy body diseases (LBDs), such as Parkinson disease. However, the pathogenic modifications of this protein and the mechanisms underlying its activity have not been fully characterized. Recent studies suggest that small amounts of α-synuclein are released from neuronal cells by unconventional exocytosis, and that this extracellular α-synuclein contributes to the major pathological features of LBD, such as neurodegeneration, progressive spreading of α-synuclein pathology, and neuroinflammation. In this article, we review a rapidly growing body of literature on possible mechanisms by which extracellular α-synuclein contributes to LBD pathology, and discuss therapeutic approaches to target this form of α-synuclein to halt disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential pathways for exogenous 'seeds' to meet endogenous α-synuclein.
Figure 2: Physiological processing and pathogenic dysregulation of α-synuclein—a working model.
Figure 3: Potential therapeutic strategies to target pathogenic extracellular α-synuclein.

Similar content being viewed by others

References

  1. Huse, D. M. et al. Burden of illness in Parkinson's disease. Mov. Disord. 20, 1449–1454 (2005).

    Article  Google Scholar 

  2. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  Google Scholar 

  3. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    Article  CAS  Google Scholar 

  4. Langston, J. W. The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 59, 591–596 (2006).

    Article  Google Scholar 

  5. Braak, H. & Del Tredici, K. Nervous system pathology in sporadic Parkinson disease. Neurology 70, 1916–1925 (2008).

    Article  Google Scholar 

  6. Jellinger, K. A. A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol. 116, 1–16 (2008).

    Article  CAS  Google Scholar 

  7. Surmeier, D. J. & Sulzer, D. The pathology roadmap in Parkinson disease. Prion 7, 85–91 (2013).

    Article  CAS  Google Scholar 

  8. Marques, O. & Outeiro, T. F. Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis. 3, e350 (2012).

    Article  CAS  Google Scholar 

  9. Olanow, C. W. & Brundin, P. Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder? Mov. Disord. 28, 31–40 (2013).

    Article  CAS  Google Scholar 

  10. Vekrellis, K. & Stefanis, L. Targeting intracellular and extracellular alpha-synuclein as a therapeutic strategy in Parkinson's disease and other synucleinopathies. Expert Opin. Ther. Targets 16, 421–432 (2012).

    Article  CAS  Google Scholar 

  11. Bendor, J. T., Logan, T. P. & Edwards, R. H. The function of α-synuclein. Neuron 79, 1044–1066 (2013).

    Article  CAS  Google Scholar 

  12. Kalia, L. V., Kalia, S. K., McLean, P. J., Lozano, A. M. & Lang, A. E. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann. Neurol. 73, 155–169 (2013).

    Article  CAS  Google Scholar 

  13. Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).

    Article  CAS  Google Scholar 

  14. Lee, H.-J., Patel, S. & Lee, S.-J. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25, 6016–6024 (2005).

    Article  CAS  Google Scholar 

  15. El-Agnaf, O. M. et al. α-Synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma. FASEB J. 17, 1945–1947 (2003).

    Article  CAS  Google Scholar 

  16. Emmanouilidou, E. et al. Assessment of α-synuclein secretion in mouse and human brain parenchyma. PLoS ONE 6, e22225 (2011).

    Article  CAS  Google Scholar 

  17. Barbour, R. et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener. Dis. 5, 55–59 (2008).

    Article  CAS  Google Scholar 

  18. Mollenhauer, B. et al. α-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system. J. Neural Transm. 119, 739–746 (2012).

    Article  CAS  Google Scholar 

  19. Jang, A. et al. Non-classical exocytosis of α-synuclein is sensitive to folding states and promoted under stress conditions. J. Neurochem. 113, 1263–1274 (2010).

    CAS  PubMed  Google Scholar 

  20. Bae, E. J. et al. Lipid peroxidation product 4-hydroxy-2-nonenal promotes seeding-capable oligomer formation and cell-to-cell transfer of α-synuclein. Antioxid. Redox Signal. 18, 770–783 (2013).

    Article  CAS  Google Scholar 

  21. Lee, H. J. et al. Dopamine promotes formation and secretion of non-fibrillar α-synuclein oligomers. Exp. Mol. Med. 43, 216–222 (2011).

    Article  CAS  Google Scholar 

  22. Lee, H. J. et al. Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein. Exp. Mol. Med. 45, e22 (2013).

    Article  Google Scholar 

  23. Danzer, K. M. et al. Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 25, 326–336 (2010).

    Article  Google Scholar 

  24. Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).

    Article  Google Scholar 

  25. Malhotra, V. Unconventional protein secretion: an evolving mechanism. EMBO J. 32, 1660–1664 (2013).

    Article  CAS  Google Scholar 

  26. Emmanouilidou, E. et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).

    Article  CAS  Google Scholar 

  27. Hasegawa, T. et al. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein. PLoS ONE 6, e29460 (2011).

    Article  CAS  Google Scholar 

  28. Danzer, K. M. et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7, 42 (2012).

    Article  CAS  Google Scholar 

  29. Manjithaya, R., Anjard, C., Loomis, W. F. & Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537–546 (2010).

    Article  CAS  Google Scholar 

  30. Lee, H.-J., Khoshaghideh, F., Patel, S. & Lee, S.-J. Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway. J. Neurosci. 24, 1888–1896 (2004).

    Article  CAS  Google Scholar 

  31. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  Google Scholar 

  32. Ejlerskov, P. et al. Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome–lysosome fusion. J. Biol. Chem. 288, 17313–17335 (2013).

    Article  CAS  Google Scholar 

  33. Mollenhauer, B., El-Agnaf, O. M., Marcus, K., Trenkwalder, C. & Schlossmacher, M. G. Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomark. Med. 4, 683–699 (2010).

    Article  CAS  Google Scholar 

  34. Tokuda, T. et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75, 1766–1772 (2010).

    Article  CAS  Google Scholar 

  35. Hong, Z. et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain 133, 713–726 (2010).

    Article  Google Scholar 

  36. Mollenhauer, B. et al. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 10, 230–240 (2011).

    Article  CAS  Google Scholar 

  37. Lee, H.-J. et al. Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol. 40, 1835–1849 (2008).

    Article  CAS  Google Scholar 

  38. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  Google Scholar 

  39. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  Google Scholar 

  40. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  Google Scholar 

  41. Hansen, C. et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    Article  CAS  Google Scholar 

  42. Danzer, K. M. et al. Different species of α-synuclein oligomers induce calcium influx and seeding. J. Neurosci. 27, 9220–9232 (2007).

    Article  CAS  Google Scholar 

  43. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  Google Scholar 

  44. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    Article  CAS  Google Scholar 

  45. Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  CAS  Google Scholar 

  46. Masuda-Suzukake, M. et al. Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1128–1138 (2013).

    Article  Google Scholar 

  47. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  Google Scholar 

  48. Watts, J. C. et al. Transmission of multiple system atrophy prions to transgenic mice. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1318268110.

  49. Lee, S. J., Lim, H. S., Masliah, E. & Lee, H. J. Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci. Res. 70, 339–348 (2011).

    Article  CAS  Google Scholar 

  50. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  Google Scholar 

  51. Lee, S.-J. Origins and effects of extracellular α synuclein: implications in Parkinson's disease. J. Mol. Neurosci. 34, 17–22 (2008).

    Article  CAS  Google Scholar 

  52. Lee, S. J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nat. Rev. Neurol. 6, 702–706 (2010).

    Article  Google Scholar 

  53. Diogenes, M. J. et al. Extracellular α-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J. Neurosci. 32, 11750–11762 (2012).

    Article  CAS  Google Scholar 

  54. Lee, H. J. et al. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 285, 9262–9272 (2010).

    Article  CAS  Google Scholar 

  55. Halliday, G. M. & Stevens, C. H. Glia: initiators and progressors of pathology in Parkinson's disease. Mov. Disord. 26, 6–17 (2011).

    Article  Google Scholar 

  56. Lee, H. J., Kim, C. & Lee, S. J. Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid. Med. Cell. Longev. 3, 283–287 (2010).

    Article  Google Scholar 

  57. Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J. 19, 533–542 (2005).

    Article  CAS  Google Scholar 

  58. Reynolds, A. D. et al. Nitrated α-synuclein-activated microglial profiling for Parkinson's disease. J. Neurochem. 104, 1504–1525 (2008).

    Article  CAS  Google Scholar 

  59. Sung, J. Y. et al. Proteolytic cleavage of extracellular secreted α-synuclein via matrix metalloproteinases. J. Biol. Chem. 280, 25216–25224 (2005).

    Article  CAS  Google Scholar 

  60. Lee, H.-J., Suk, J. E., Bae, E. J. & Lee, S.-J. Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372, 423–428 (2008).

    Article  CAS  Google Scholar 

  61. Stefanova, N. et al. Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am. J. Pathol. 179, 954–963 (2011).

    Article  CAS  Google Scholar 

  62. Bae, E. J. et al. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012).

    Article  CAS  Google Scholar 

  63. Graeber, M. B. & Streit, W. J. Microglia: biology and pathology. Acta Neuropathol. 119, 89–105 (2010).

    Article  Google Scholar 

  64. Tang, S. C. et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl Acad. Sci. USA 104, 13798–13803 (2007).

    Article  CAS  Google Scholar 

  65. Rolls, A. et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 9, 1081–1088 (2007).

    Article  CAS  Google Scholar 

  66. Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  67. Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation grant, funded by the Korean Government (2010-0015,188), and by the Korea Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A111228).

Author information

Authors and Affiliations

Authors

Contributions

S.-J. Lee researched data for the article. All authors made substantial contributions to discussion of the content, writing of the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Seung-Jae Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HJ., Bae, EJ. & Lee, SJ. Extracellular α-synuclein—a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10, 92–98 (2014). https://doi.org/10.1038/nrneurol.2013.275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing