Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The biogenesis of multivesicular endosomes

Abstract

Recent progress has been made in our understanding of the molecular mechanisms that regulate the biogenesis of multivesicular transport intermediates in the degradation pathway that leads to lysosomes. Here, we discuss recent work that uncovers some of the mechanisms that cause both membrane invagination within these newly forming intermediates and the detachment of these intermediates from early endosomal membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The degradation (multivesicular) pathway that leads to lysosomes.
Figure 2: Ultrastructure of endosomes after HRS or annexin-II downregulation.
Figure 3: The ECV/MVB-related functions of HRS and annexin-II.

Similar content being viewed by others

References

  1. Trump, B. F., Goldblatt, P. J. & Stowell, R. E. Studies of necrosis in vitro of mouse hepatic parenchymal cells. Ultrastructural and cytochemical alterations of cytosomes, cytosegresomes, multivesicular bodies, and microbodies and their relation to the lysosome concept. Lab. Invest. 14, 1946–1968 (1965).

    CAS  PubMed  Google Scholar 

  2. Helenius, A., Mellman, I., Wall, D. & Hubbard, A. Endosomes. Trends Biochem. Sci. 8, 245–250 (1983).

    Article  CAS  Google Scholar 

  3. Geuze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F. & Schwartz, A. L. Intracellular site of asialoglycoprotein receptor–ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32, 277–287 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, K., Beardmore, J., Kanety, H., Schlessinger, J. & Hopkins, C. R. Localization of the epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol. 102, 500–509 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Mueller, S. C. & Hubbard, A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes. J. Cell Biol. 102, 932–942 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Gruenberg, J., Griffiths, G. & Howell, K. E. Characterisation of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol. 108, 1301–1316 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths, G., Hoflack, B., Simons, K., Mellman, I. & Kornfeld, S. The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52, 329–341 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).

    Article  CAS  Google Scholar 

  9. Dunn, K. W., McGraw, T. E. & Maxfield, F. R. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J. Cell Biol. 109, 3303–3314 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Yamashiro, D. J., Tycko, B., Fluss, S. R. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.4) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Felder, S. et al. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61, 623–634 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  13. Gruenberg, J. & Maxfield, F. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Mukherjee, S. & Maxfield, F. R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Parton, R. G., Simons, K. & Dotti, C. G. Axonal and dentritic endocytic pathways in cultured neurons. J. Cell Biol. 119, 123–137 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1388 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. A. & Gruenberg, J. Microtubule and motor dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62, 719–731 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure/function. Nature 392, 193–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Goda, Y. & Pfeffer, S. R. Selective recycling of the mannose 6-phosphate/IGF-II receptor to the TGN in vitro. Cell 55, 309–320 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Murk, J. L., Stoorvogel, W., Kleijmeer, M. J. & Geuze, H. J. The plasticity of multivesicular bodies and the regulation of antigen presentation. Semin. Cell Dev. Biol. 13, 303–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Prescianotto-Baschong, C. & Riezman, H. Ordering of compartments in the yeast endocytic pathway. Traffic 3, 37–49 (2002).

    Article  PubMed  Google Scholar 

  23. Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Umeda, A. et al. Distribution and trafficking of MPR300 is normal in cells with cholesterol accumulated in late endocytic compartments: evidence for early endosome-to-TGN trafficking of MPR300 in NPC fibroblasts. J. Lipid Res. 44, 1821–1832 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Seaman, M. N., Marcusson, E. G., Cereghino, J. L. & Emr, S. D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137, 79–92 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mukherjee, S., Soe, T. T. & Maxfield, F. R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol. 144, 1271–1284 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fivaz, M. et al. Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J. 21, 3989–4000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petiot, A., Fauré, J., Stenmark, H. & Gruenberg, J. PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J. Cell Biol. 162, 971–979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol. 9, 55–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155, 1251–1264 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komada, M. & Soriano, P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 13, 1475–1485 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Urbe, S., Mills, I. G., Stenmark, H., Kitamura, N. & Clague, M. J. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol. Cell Biol. 20, 7685–7692 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    CAS  PubMed  Google Scholar 

  35. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  39. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hammond, D. E. et al. Endosomal dynamics of Met determine signaling output. Mol. Biol. Cell 14, 1346–1354 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Bishop, N., Horman, A. & Woodman, P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein–ubiquitin conjugates. J. Cell Biol. 157, 91–101 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human HRS protein. J. Cell Biol. 162, 425–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med. 7, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. Role of ESCRT-I in retroviral budding. J. Virol. 77, 4794–4804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Pelchen-Matthews, A., Kramer, B. & Marsh, M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol. 162, 443–455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sbrissa, D., Ikonomov, O. C. & Shisheva, A. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomembrane localization. J. Biol. Chem. 277, 6073–6079 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Ikonomov, O. C. et al. Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5-P2 production for endomembrane integrity. J. Biol. Chem. 277, 9206–9211 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Reggiori, F. & Pelham, H. R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nature Cell Biol. 4, 117–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Whitley, P. et al. Identification of mammalian Vps24p as an effector of phosphatidylinositol 3,5 bisphosphate dependent endosome compartmentalization. J. Biol. Chem. 278, 38786–38795 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Mayran, M., Parton, R. G. & Gruenberg, J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J. 13, 3242–3253 (2003).

    Article  Google Scholar 

  58. Zobiack, N., Rescher, U., Ludwig, C., Zeuschner, D. & Gerke, V. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol. Biol. Cell 14, 4896–4908 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emans, N. et al. Annexin II is a major component of fusogenic endosomal vesicles. J. Cell Biol. 120, 1357–1370 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Harder, T. & Gerke, V. The subcellular distribution of early endosomes is affected by the annexin II2p11(2) complex. J. Cell Biol. 123, 1119–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Gerke, V. & Moss, S. E. Annexins: from structure to function. Physiol. Rev. 82, 331–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Babiychuk, E. B. & Draeger, A. Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J. Cell Biol. 150, 1113–1124 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harder, T., Kellner, R., Parton, R. G. & Gruenberg, J. Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell 8, 533–545 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oling, F., Bergsma-Schutter, W. & Brisson, A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin a5 two-dimensional crystals. J. Struct. Biol. 133, 55–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Oliferenko, S. et al. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J. Cell Biol. 146, 843–854 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Steinman, R. M., Mellman, I. S., Muller, W. A. & Cohn, Z. A. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96, 1–27 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Lafont, F., Lecat, S., Verkade, P. & Simons, K. Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 142, 1413–1427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aniento, F., Gu, F., Parton, R. & Gruenberg, J. An endosomal βcop is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J. Cell Biol. 133, 29–41 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Gu, F., Aniento, F., Parton, R. & Gruenberg, J. Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J. Cell Biol. 139, 1183–1195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J. Biol. Chem. 275, 8154–8160 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Daro, E., Sheff, D., Gomez, M., Kreis, T. & Mellman, I. Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component εCOP. J. Cell Biol. 139, 1747–1759 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whitney, J. A., Gomez, M., Sheff, D., Kreis, T. E. & Mellman, I. Cytoplasmic coat proteins involved in endosome function. Cell 83, 703–713 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Press, B., Feng, Y., Hoflack, B. & Wandinger-Ness, A. Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J. Cell Biol. 140, 1075–1089 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

H.S. is supported by the Norwegian Cancer Society and the Research Council of Norway, and J.G. by the Swiss National Science Foundation and the Human Frontier Science Programme Organization.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Interpro

FYVE domain

PX domain

LocusLink

ANXA2

VPS34

Saccharomyces genome database

Fab1

Vps4

Vps10

Vps23

Vps36

Vps37

Swiss-Prot

EGFR

HRS

LAMP1

LAMP2

PIKFYVE

TSG101

FURTHER INFORMATION

Jean Gruenberg's laboratory

Harald Stenmark's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruenberg, J., Stenmark, H. The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5, 317–323 (2004). https://doi.org/10.1038/nrm1360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing