Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-specific immunopathology during malaria infection

Key Points

  • During blood-stage infections, Plasmodium parasites infect erythrocytes and can cause a variety of acute and chronic complications, some of which can be fatal. Although malaria complications are often attributed to sepsis-like systemic inflammation, the parasites in the circulation reach and interact with host tissues locally and specifically.

  • The brain, eye (retina), gastrointestinal tract, bones, lungs, kidneys and placenta are the organs that are specifically affected both during and even long after malaria infection. The unique anatomical structure of the vessels, parenchyma and lymphatics in each organ shapes the interaction with Plasmodium parasites and their products.

  • In the brain, unique areas such as the olfactory bulb, retina and perivascular spaces share similar anatomical and immunological features; Plasmodium parasites and their associated inflammation cause blood–brain barrier disruption in these areas.

  • The gastrointestinal tract microenvironment is a target of Plasmodium parasites and related events. Malaria infection causes the disruption of blood vessels and epithelial barriers in the gut.

  • Plasmodium parasites can reside in the bone marrow. At this site, the parasites and their products, such as haemozoin, interact with bone marrow niches and with cells resident in the bone tissue, including osteoblasts and osteoclasts, causing long-term effects in the host, such as bone loss.

  • The interactions that occur between Plasmodium parasites and the specific host tissues alter the outcome of malaria disease. A better understanding of malaria pathology in the context of host–parasite interactions at the various tissue levels of each organ will allow for better diagnostics and treatments for malaria.

Abstract

Systemic inflammation mediated by Plasmodium parasites is central to malaria disease and its complications. Plasmodium parasites reside in erythrocytes and can theoretically reach all host tissues via the circulation. However, actual interactions between parasitized erythrocytes and host tissues, along with the consequent damage and pathological changes, are limited locally to specific tissue sites. Such tissue specificity of the parasite can alter the outcome of malaria disease, determining whether acute or chronic complications occur. Here, we give an overview of the recent progress that has been made in understanding tissue-specific immunopathology during Plasmodium infection. As knowledge on tissue-specific host–parasite interactions accumulates, better treatment modalities and targets may emerge for intervention in malaria disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outcomes of Plasmodium infection of red blood cells in the bloodstream.
Figure 2: Interaction of Plasmodium-infected red blood cells with various blood vessels and lymphatics.
Figure 3: Infected red blood cells in close proximity with brain components.
Figure 4: Infected red blood cells in gut and bone marrow niches.

Similar content being viewed by others

References

  1. Murray, C. J. L. et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 1005–1070 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Hempelmann, E. & Krafts, K. Bad air, amulets and mosquitoes: 2,000 years of changing perspectives on malaria. Malar. J. 12, 232 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Gething, P. W. et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N. Engl. J. Med. 375, 2435–2445 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. World Health Organization. World Malaria Report 2015 (WHO, 2015).

  5. Pigott, D. M. et al. Prioritising infectious disease mapping. PLoS Negl. Trop. Dis. 9, e0003756 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Naing, C., Whittaker, M. A., Nyunt Wai, V. & Mak, J. W. Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 8, e3071 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Arévalo-Herrera, M. et al. Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia. Malar. J. 14, 154 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Millar, S. B. & Cox-Singh, J. Human infections with Plasmodium knowlesi — zoonotic malaria. Clin. Microbiol. Infect. 21, 640–648 (2015).

    CAS  PubMed  Google Scholar 

  9. Seilmaier, M. et al. Severe Plasmodium knowlesi infection with multi-organ failure imported to Germany from Thailand/Myanmar. Malar. J. 13, 422 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Storm, J. & Craig, A. G. Pathogenesis of cerebral malaria — inflammation and cytoadherence. Front. Cell. Infect. Microbiol. 4, 100 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Milner, D. A. et al. The systemic pathology of cerebral malaria in African children. Front. Cell. Infect. Microbiol. 4, 104 (2014). This is an important human study that systematically identifies the sequestration of parasites in not only the brain, but also many other parts of the human body during cerebral malaria.

    PubMed  PubMed Central  Google Scholar 

  12. Milner, D. et al. Pulmonary pathology in pediatric cerebral malaria. Hum. Pathol. 44, 2719–2726 (2013).

    PubMed  Google Scholar 

  13. Milner, D. A. et al. Quantitative assessment of multiorgan sequestration of parasites in fatal pediatric cerebral malaria. J. Infect. Dis. 212, 1317–1321 (2015). This is an important study that quantifies multi-organ sequestration of parasites in fatal human malaria.

    PubMed  PubMed Central  Google Scholar 

  14. Boivin, M. J. et al. Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics 119, e360–e366 (2007).

    PubMed  Google Scholar 

  15. Roze, E. et al. Neurologic sequelae after severe falciparum malaria in adult travelers. Eur. Neurol. 46, 192–197 (2001).

    CAS  PubMed  Google Scholar 

  16. Marsh, K. & Kinyanjui, S. Immune effector mechanisms in malaria. Parasite Immunol. 28, 51–60 (2006).

    CAS  PubMed  Google Scholar 

  17. Illingworth, J. et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J. Immunol. 190, 1038–1047 (2013).

    CAS  PubMed  Google Scholar 

  18. Portugal, S. et al. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. eLife 4, e07218 (2015).

    PubMed Central  Google Scholar 

  19. Portugal, S., Pierce, S. K. & Crompton, P. D. Young lives lost as B cells falter: what we are learning about antibody responses in malaria. J. Immunol. 190, 3039–3046 (2013).

    CAS  PubMed  Google Scholar 

  20. Chen, I. et al. “Asymptomatic” malaria: a chronic and debilitating infection that should be treated. PLoS Med. 13, e1001942 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Magrath, I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br. J. Haematol. 156, 744–756 (2012).

    CAS  PubMed  Google Scholar 

  22. Thorley-Lawson, D., Deitsch, K. W., Duca, K. a. & Torgbor, C. The link between Plasmodium falciparum malaria and endemic Burkitt'slymphoma — new insight into a 50-year-old enigma. PLoS Pathog. 12, 12–16 (2016).

    Google Scholar 

  23. Torgbor, C. et al. A multifactorial role for P. falciparum malaria in endemic Burkitt's lymphoma pathogenesis. PLoS Pathog. 10, e1004170 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Robbiani, D. F. et al. Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell 162, 727–737 (2015). This study shows that murine Plasmodium infections can promote the development of mature B cell lymphoma by inducing AID expression in lymphoid tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis, C. P., Lavy, C. B. D. & Harrison, W. J. Delay in skeletal maturity in Malawian children. J. Bone Joint Surg. Br. 84, 732–734 (2002).

    CAS  PubMed  Google Scholar 

  26. LaBeaud, A. D. et al. Parasitism in children aged three years and under: relationship between infection and growth in rural coastal Kenya. PLoS Negl. Trop. Dis. 9, e0003721 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Lee, M. S. J. et al. Plasmodium products persist in the bone marrow and promote chronic bone loss. Sci. Immunol. 2, eaam8093 (2017). This study shows experimentally for the first time that Plasmodium metabolic products, including haemozoin, cause chronic bone loss.

    PubMed  Google Scholar 

  28. Liehl, P. & Mota, M. M. Innate recognition of malarial parasites by mammalian hosts. Int. J. Parasitol. 42, 557–566 (2012).

    CAS  PubMed  Google Scholar 

  29. Gazzinelli, R. T., Kalantari, P., Fitzgerald, K. A. & Golenbock, D. T. Innate sensing of malaria parasites. Nat. Rev. Immunol. 14, 744–757 (2014).

    CAS  PubMed  Google Scholar 

  30. Egan, E. S. et al. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science 348, 711–714 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zenonos, Z. A. et al. Basigin is a druggable target for host-oriented antimalarial interventions. J. Exp. Med. 212, 1145–1151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Langhorne, J. & Duffy, P. E. Expanding the antimalarial toolkit: targeting host-parasite interactions. J. Exp. Med. 213, 143–153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006).

    CAS  PubMed  Google Scholar 

  34. Haldar, K. & Mohandas, N. Malaria, erythrocytic infection, and anemia. Hematology Am. Soc. Hematol. Educ. Program 2009, 87–93 (2009).

    Google Scholar 

  35. Miller, L. H., Ackerman, H. C., Su, X.-Z. & Wellems, T. E. Malaria biology and disease pathogenesis: insights for new treatments. Nat. Med. 19, 156–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Evans, K. J., Hansen, D. S., Van Rooijen, N., Buckingham, L. A. & Schofield, L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 107, 1192–1199 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lamikanra, A. A. et al. Malarial anemia: of mice and men. Blood 110, 18–28 (2007).

    CAS  PubMed  Google Scholar 

  38. Lamb, T. J., Brown, D. E., Potocnik, A. J. & Langhorne, J. Insights into the immunopathogenesis of malaria using mouse models. Expert Rev. Mol. Med. 8, 1–22 (2006).

    PubMed  Google Scholar 

  39. Collins, W. E., Jeffery, G. M. & Roberts, J. M. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am. J. Trop. Med. Hyg. 68, 410–412 (2003).

    PubMed  Google Scholar 

  40. Jakeman, G. N., Saul, A., Hogarth, W. L. & Collins, W. E. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology 119, 127–133 (1999).

    PubMed  Google Scholar 

  41. White, N. J. Malaria parasite clearance. Malar. J. 16, 88 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Fernandez-Arias, C. et al. Anti-self phosphatidylserine antibodies recognize uninfected erythrocytes promoting malarial anemia. Cell Host Microbe 19, 194–203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sosale, N. G., Spinler, K. R., Alvey, C. & Discher, D. E. Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties. Curr. Opin. Immunol. 35, 107–112 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Segawa, K. & Nagata, S. An apoptotic 'eat me' signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015).

    CAS  PubMed  Google Scholar 

  45. Cunnington, A. J. A., de Souza, J. B., Walther, M. & Riley, E. E. M. Malaria impairs resistance to Salmonella through heme- and heme oxygenase–dependent dysfunctional granulocyte mobilization. Nat. Med. 18, 120–127 (2011).

    PubMed  PubMed Central  Google Scholar 

  46. Ferreira, A., Balla, J., Jeney, V., Balla, G. & Soares, M. P. A central role for free heme in the pathogenesis of severe malaria: the missing link? J. Mol. Med. 86, 1097–1111 (2008).

    CAS  PubMed  Google Scholar 

  47. Zhao, H. et al. Lipocalin 2 bolsters innate and adaptive immune responses to blood-stage malaria infection by reinforcing host iron metabolism. Cell Host Microbe 12, 705–716 (2012).

    CAS  PubMed  Google Scholar 

  48. Langhorne, J., Ndungu, F. M. M., Sponaas, A.-M. & Marsh, K. Immunity to malaria: more questions than answers. Nat. Immunol. 9, 725–732 (2008).

    CAS  PubMed  Google Scholar 

  49. Riley, E. M. & Stewart, V. A. Immune mechanisms in malaria: new insights in vaccine development. Nat. Med. 19, 168–178 (2013).

    CAS  PubMed  Google Scholar 

  50. Tiburcio, M., Sauerwein, R., Lavazec, C. & Alano, P. Erythrocyte remodeling by Plasmodium falciparum gametocytes in the human host interplay. Trends Parasitol. 31, 270–278 (2015).

    CAS  PubMed  Google Scholar 

  51. Goel, S. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–317 (2015).

    CAS  PubMed  Google Scholar 

  52. Franke-Fayard, B., Fonager, J., Braks, A., Khan, S. M. & Janse, C. J. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathog. 6, e1001032 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Zhao, H. et al. Olfactory plays a key role in spatiotemporal pathogenesis of cerebral malaria. Cell Host Microbe 15, 551–563 (2014). This is the first study to show that the blood–brain barrier is disrupted at the olfactory bulb during experimental cerebral malaria.

    CAS  PubMed  Google Scholar 

  54. Claser, C. et al. CD8+ T cells and IFN-γ mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS ONE 6, e18720 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rénia, L. & Howland, S. W. Targeting the olfactory bulb during experimental cerebral malaria. Trends Parasitol. 30, 375–376 (2014).

    PubMed  Google Scholar 

  56. Fonager, J. et al. Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo. J. Exp. Med. 209, 93–107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dorovini-Zis, K. et al. The neuropathology of fatal cerebral malaria in Malawian children. Am. J. Pathol. 178, 2146–2158 (2011).

    PubMed  PubMed Central  Google Scholar 

  58. Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wassmer, S. C. et al. Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am. J. Trop. Med. Hyg. 93, 42–56 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lennartz, F. et al. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria. Cell Host Microbe 21, 403–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Howland, S. W. et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol. Med. 5, 916–931 (2013).

    CAS  PubMed Central  Google Scholar 

  62. Jambou, R. et al. Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions. PLoS Pathog. 6, e1001021 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Mantel, P. Y. & Marti, M. The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell. Microbiol. 16, 344–354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mantel, P. Y. et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13, 521–534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Heyde, H. C., Nolan, J., Combes, V., Gramaglia, I. & Grau, G. E. A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol. 22, 503–508 (2006).

    CAS  PubMed  Google Scholar 

  66. Frevert, U. & Nacer, A. Immunobiology of Plasmodium in liver and brain. Parasite Immunol. 35, 267–282 (2013).

    CAS  PubMed  Google Scholar 

  67. Owens, T., Bechmann, I. & Engelhardt, B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropathol. Exp. Neurol. 67, 1113–1121 (2008).

    PubMed  Google Scholar 

  68. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    CAS  PubMed  Google Scholar 

  69. Taylor, T. E. et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat. Med. 10, 143–145 (2004).

    CAS  PubMed  Google Scholar 

  70. Idro, R., Jenkins, N. E. & Newton, C. R. J. C. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol. 4, 827–840 (2005).

    PubMed  Google Scholar 

  71. Newton, C. R., Hien, T. T. & White, N. Cerebral malaria. J. Neurol. Neurosurg. Psychiatry 69, 433–441 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Seydel, K. B. et al. Brain swelling and death in children with cerebral malaria. N. Engl. J. Med. 372, 1126–1137 (2015). This study shows that death occurs in humans during cerebral malaria owing to brain swelling and oedema.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Penet, M. F. et al. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. J. Neurosci. 25, 7352–7358 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Medana, I. M., Hunt, N. H. & Chan-Ling, T. Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 19, 91–103 (1997).

    CAS  PubMed  Google Scholar 

  75. Coban, C. et al. Pathological role of Toll-like receptor signaling in cerebral malaria. Int. Immunol. 19, 67–79 (2007).

    CAS  PubMed  Google Scholar 

  76. Hoffman, A. et al. Experimental cerebral malaria spreads along the rostral migratory stream. PLoS Pathog. 12, e1005470 (2016).

    Google Scholar 

  77. Shrivastava, S. K. et al. Uptake of parasite-derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia 65, 75–92 (2017).

    PubMed  Google Scholar 

  78. Medana, I. M., Chan-Ling, T. & Hunt, N. H. Redistribution and degeneration of retinal astrocytes in experimental murine cerebral malaria: relationship to disruption of the blood-retinal barrier. Glia 16, 51–64 (1996).

    CAS  PubMed  Google Scholar 

  79. Medana, I. M. et al. Axonal Injury in cerebral malaria. Am. J. Pathol. 160, 655–666 (2002).

    PubMed  PubMed Central  Google Scholar 

  80. Medana, I. M., Idro, R. & Newton, C. R. J. C. Axonal and astrocyte injury markers in the cerebrospinal fluid of Kenyan children with severe malaria. J. Neurol. Sci. 258, 93–98 (2007).

    PubMed  Google Scholar 

  81. Aspelund, a. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). References 81 and 82 describe the presence of dural lymphatics.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Coureuil, M., Lécuyer, H., Bourdoulous, S. & Nassif, X. A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers. Nat. Rev. Microbiol. 15, 149–159 (2017).

    CAS  PubMed  Google Scholar 

  84. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Louveau, A., Harris, T. H. & Kipnis, J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 36, 569–577 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ransohoff, R. M. & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12, 623–635 (2012).

    CAS  PubMed  Google Scholar 

  87. Iliff, J. J., Goldman, S. a. & Nedergaard, M. Implications of the discovery of brain lymphatic pathways. Lancet Neurol. 14, 977–979 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Iliff, J. J. et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 123, 1299–1309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ampawong, S. et al. Electron microscopic features of brain edema in rodent cerebral malaria in relation to glial fibrillary acidic protein expression. Int. J. Clin. Exp. Pathol. 7, 2056–2067 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Promeneur, D., Lunde, L. K., Amiry-Moghaddam, M. & Agre, P. Protective role of brain water channel AQP4 in murine cerebral malaria. Proc. Natl Acad. Sci. USA 110, 1035–1040 (2013).

    CAS  PubMed  Google Scholar 

  91. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    PubMed  Google Scholar 

  92. Shaw, T. N. et al. Perivascular arrest of CD8+ T cells is a signature of experimental cerebral malaria. PLoS Pathog. 11, e1005210 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Lackner, P. et al. Scanning electron microscopy of the neuropathology of murine cerebral malaria. Malar. J. 5, 116 (2006).

    PubMed  PubMed Central  Google Scholar 

  94. Ampawong, S. et al. Quantitation of brain edema and localisation of aquaporin 4 expression in relation to susceptibility to experimental cerebral malaria. Int. J. Clin. Exp. Pathol. 4, 566–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nacer, A. et al. Experimental cerebral malaria pathogenesis — hemodynamics at the blood brain barrier. PLoS Pathog. 10, e1004528 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Howland, S. W., Poh, C. M. & Rénia, L. Activated brain endothelial cells cross-present malaria antigen. PLoS Pathog. 11, e1004963 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Howland, S. W., Gun, S. Y., Claser, C., Poh, C. M. & Rénia, L. Measuring antigen presentation in mouse brain endothelial cells ex vivo and in vitro. Nat. Protoc. 10, 2016–2026 (2015).

    CAS  PubMed  Google Scholar 

  98. Swanson, P. a. et al. CD8+ T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature. PLoS Pathog. 12, e1006022 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Combes, V., Guillemin, G. J., Chan-Ling, T., Hunt, N. H. & Grau, G. E. R. The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes. Trends Parasitol. 28, 311–319 (2012).

    CAS  PubMed  Google Scholar 

  100. Greiner, J. et al. Correlation of hemorrhage, axonal damage, and blood-tissue barrier disruption in brain and retina of Malawian children with fatal cerebral malaria. Front. Cell. Infect. Microbiol. 5, 18 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Saeki, N. et al. Histologic characteristics of normal perivascular spaces along the optic tract: new pathogenetic mechanism for edema in tumors in the pituitary region. Am. J. Neuroradiol. 25, 1218–1222 (2004).

    PubMed  PubMed Central  Google Scholar 

  102. Kwee, R. M. & Kwee, T. C. Virchow–Robin spaces at MR imaging. Radiographics 27, 1071–1086 (2007).

    PubMed  Google Scholar 

  103. Beare, N. A. V., Taylor, T. E., Harding, S. P., Lewallen, S. & Molyneux, M. E. Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am. J. Trop. Med. Hyg. 75, 790–797 (2006). This is the first study to describe malarial retinopathy in human cerebral malaria.

    PubMed  Google Scholar 

  104. Idro, R., Marsh, K., John, C. C. & Newton, C. R. J. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr. Res. 68, 267–274 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Maude, R. J. et al. Magnetic resonance imaging of the brain in adults with severe falciparum malaria. Malar. J. 13, 177 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Grau, G. E. et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J. Infect. Dis. 187, 461–466 (2003).

    PubMed  Google Scholar 

  107. White, V. A., Lewallen, S., Beare, N. A. V., Molyneux, M. E. & Taylor, T. E. Retinal pathology of pediatric cerebral malaria in Malawi. PLoS ONE 4, e4317 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Beare, N. A., Lewallen, S., Taylor, T. E. & Molyneux, M. E. Redefining cerebral malaria by including malaria retinopathy. Future Microbiol. 6, 349–355 (2011).

    PubMed  Google Scholar 

  109. Maccormick, I. J. C. et al. Cerebral malaria in children: using the retina to study the brain. Brain 137, 2119–2142 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Barrera, V. et al. Severity of retinopathy parallels the degree of parasite sequestration in the eyes and brains of Malawian children with fatal cerebral malaria. J. Infect. Dis. 211, 1977–1986 (2015).

    PubMed  Google Scholar 

  111. Vecino, E., Rodriguez, F. D., Ruzafa, N., Pereiro, X. & Sharma, S. C. Glia–neuron interactions in the mammalian retina. Prog. Retin. Eye Res. 51, 1–40 (2016).

    CAS  PubMed  Google Scholar 

  112. Saggu, R., Faille, D., Grau, G. E., Cozzone, P. J. & Viola, A. In the eye of experimental cerebral malaria. Am. J. Pathol. 179, 1104–1109 (2011).

    PubMed  PubMed Central  Google Scholar 

  113. Danielyan, L. et al. Intranasal delivery of cells to the brain. Eur. J. Cell Biol. 88, 315–324 (2009).

    CAS  PubMed  Google Scholar 

  114. Chaigneau, E. et al. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl Acad. Sci. USA 100, 13081–13086 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ueno, M. & Dobrogowska, D. H. & Vorbrodt, A. W. Immunocytochemical evaluation of the blood-brain barrier to endogenous albumin in the olfactory bulb and pons of senescence-accelerated mice (SAM). Histochem. Cell Biol. 105, 203–212 (1996).

    CAS  PubMed  Google Scholar 

  116. Ioannidis, L. J., Nie, C. Q. & Hansen, D. S. The role of chemokines in severe malaria: more than meets the eye. Parasitology 141, 602–613 (2014).

    CAS  PubMed  Google Scholar 

  117. Abkallo, H. M. et al. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts. Int. J. Parasitol. 44, 467–473 (2014).

    CAS  PubMed  Google Scholar 

  118. Taniguchi, T. et al. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis. Sci. Rep. 5, 15699 (2015). This study shows that P. berghei parasites may promote gut pathology and dysbiosis of the intestinal microbiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S. & Gordon, M. A. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379, 2489–2499 (2012).

    PubMed  PubMed Central  Google Scholar 

  120. Chau, J. Y. et al. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal salmonella bacteremia. Infect. Immun. 81, 3515–3526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Adegnika, A. a & Kremsner, P. G. Epidemiology of malaria and helminth interaction: a review from 2001 to 2011. Curr. Opin. HIV AIDS 7, 221–224 (2012).

    PubMed  Google Scholar 

  122. Potts, R. A. et al. Mast cells and histamine alter intestinal permeability during malaria parasite infection. Immunobiology 221, 468–474 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Mastelic, B. et al. IL-22 protects against liver pathology and lethality of an experimental blood-stage malaria infection. Front. Immunol. 3, 85 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Mooney, J. P. et al. The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection. Mucosal Immunol. 7, 1302–1311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sellau, J., Alvarado, C., Hoenow, S. & Mackroth, M. IL-22 dampens the T cell response in experimental malaria. Sci. Rep. 6, 28058 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yilmaz, B. et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell 159, 1277–1289 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl Acad. Sci. USA 113, 2235–2240 (2016). This study shows that the gut microbiota modulates the severity of malaria.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yooseph, S. et al. Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection. BMC Genomics 16, 631 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Bernier-Latmani, J. et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Invest. 125, 4572–4586 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Spadoni, I., Fornasa, G. & Rescigno, M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat. Rev. Immunol. 17, 761–773 (2017).

    CAS  PubMed  Google Scholar 

  131. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Imai, T. et al. Cytotoxic activities of CD8+ T cells collaborate with macrophages to protect against blood-stage murine malaria. eLife 2015, e04232 (2015).

    Google Scholar 

  133. Panichakul, T. et al. Production of erythropoietic cells in vitro for continuous culture of Plasmodium vivax. Int. J. Parasitol. 37, 1551–1557 (2007).

    PubMed  Google Scholar 

  134. Tamez, P. A., Liu, H., Fernandez-Pol, S., Haldar, K. & Wickrema, A. Stage-specific susceptibility of human erythroblasts to Plasmodium falciparum malaria infection. Blood 114, 3652–3655 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Farfour, E., Charlotte, F., Settegrana, C., Miyara, M. & Buffet, P. The extravascular compartment of the bone marrow: a niche for Plasmodium falciparum gametocyte maturation? Malar. J. 11, 285 (2012).

    PubMed  PubMed Central  Google Scholar 

  136. Joice, R. et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl Med. 6, 244re5 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Aguilar, R. et al. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 123, 959–966 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Chasis, J. A. & Mohandas, N. Erythroblastic islands: niches for erythropoiesis. Blood 112, 470–478 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Imai, T. et al. CD8+ T cell activation by murine erythroblasts infected with malaria parasites. Sci. Rep. 3, 1572 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Mercier, F. E., Ragu, C. & Scadden, D. T. The bone marrow at the crossroads of blood and immunity. Nat. Rev. Immunol. 12, 49–60 (2011).

    PubMed  PubMed Central  Google Scholar 

  141. Omatsu, Y. & Nagasawa, T. The critical and specific transcriptional regulator of the microenvironmental niche for hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 22, 330–336 (2015).

    CAS  PubMed  Google Scholar 

  142. Taylor, W. R. J., Hanson, J., Turner, G. D. H., White, N. J. & Dondorp, A. M. Respiratory manifestations of malaria. Chest 142, 492–505 (2012).

    PubMed  Google Scholar 

  143. Ehrich, J. H. H. & Eke, F. U. Malaria-induced renal damage: facts and myths. Pediatr. Nephrol. 22, 626–637 (2007).

    PubMed  Google Scholar 

  144. Brabin, B. J. et al. The sick placenta — the role of malaria. Placenta 25, 359–378 (2004).

    CAS  PubMed  Google Scholar 

  145. Shechter, R., London, A. & Schwartz, M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat. Rev. Immunol. 13, 206–218 (2013).

    CAS  PubMed  Google Scholar 

  146. Aspelund, A. et al. The Schlemm's canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975–3986 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Maitland, K. & Marsh, K. Pathophysiology of severe malaria in children. Acta Trop. 90, 131–140 (2004).

    PubMed  Google Scholar 

  148. Wilairatana, P., Meddings, J. B., Ho, M., Vannaphan, S. & Looareesuwan, S. Increased gastrointestinal permeability in patients with Plasmodium falciparum malaria. Clin. Infect. Dis. 24, 430–435 (1997).

    CAS  PubMed  Google Scholar 

  149. Romero, A. et al. Changes in gastric mucosa in acute malaria [Spanish]. Gen 47, 123–128 (1993).

    CAS  Google Scholar 

  150. Anstey, N. M., Douglas, N. M., Poespoprodjo, J. R. & Price, R. N. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. Adv. Parasitol. 80, 151–201 (2012).

    PubMed  Google Scholar 

  151. Collins, W. E. & Jeffery, G. M. Plasmodium ovale: parasite and disease. Clin. Microbiol. Rev. 18, 570–581 (2005).

    PubMed  PubMed Central  Google Scholar 

  152. Strydom, K.-A., Ismail, F. & Frean, J. Plasmodium ovale: a case of not-so-benign tertian malaria. Malar. J. 13, 85 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Collins, W. E. & Jeffery, G. M. Plasmodium malariae: parasite and disease. Clin. Microbiol. Rev. 20, 579–592 (2007).

    PubMed  PubMed Central  Google Scholar 

  154. Singh, B. & Daneshvar, C. Human infections and detection of Plasmodium knowlesi. Clin. Microbiol. Rev. 26, 165–184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by Grants-in-Aid for Scientific Research (B grant no. 16H05181 to C.C.) and by the Japan Agency for Medical Research and Development (AMED J-PRIDE 17fm0208021h0001 to C.C.).

Author information

Authors and Affiliations

Authors

Contributions

C.C. wrote the manuscript; all authors contributed to researching data, discussing the content and reviewing and editing the manuscript.

Corresponding author

Correspondence to Cevayir Coban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Malaria

A disease caused by Plasmodium parasites belonging to the Apicomplexa phylum, which consists of several obligate intracellular parasites. The term was originally used in Italian folk medicine to mean poisonous or bad air.

Activation-induced cytidine deaminase

(AID). An enzyme that is required for two crucial B cell events in the germinal centre: somatic hypermutation and class-switch recombination.

Connective tissue

A connecting and supporting tissue composed of collagen and/or elastin fibres and interstitial fluid. Blood, bone and adipose tissue are some of the connective tissue components.

Perivascular spaces

Also known as Virchow–Robin spaces. Spaces located between brain-penetrating pial vessels and the brain tissue grey matter.

Interstitial fluid

(ISF). The solution present extracellularly, that fills the spaces between cells and tissues.

Cerebrospinal fluid

(CSF). The solution surrounding the brain and spinal cord, which mainly serves to protect these two important organs.

Olfactory bulb

An organ located on the cribriform plate, which functions in smell. The bulb surface is surrounded by complex olfactory nerve structures that originate from the nasal cavity and project to the brain. Small trabecular capillary structures are the main vessel structures inside the bulb.

Cribriform plate

A small, perforated bone structure that lies on top of the nasal cavity and supports the olfactory bulb. Olfactory nerves running from the nasal cavity to the olfactory bulb pass thorough cribriform plate.

Neurovascular coupling

A mechanism explaining the relationship between neuronal activity and the cerebral blood vessels and the blood flow.

Lacteals

Small lymphatic capillaries located in the villi of the small intestine.

Sinusoids

Vessels with a structure similar to capillaries but that have larger diameters and porous endothelial cells, which allow for permeability and exchange of materials; they are located in bone marrow, liver and spleen.

Haemozoin

A unique by-product of Plasmodium parasites that accumulates in several organs, including spleen, liver and bone marrow, even after the infection resolves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coban, C., Lee, M. & Ishii, K. Tissue-specific immunopathology during malaria infection. Nat Rev Immunol 18, 266–278 (2018). https://doi.org/10.1038/nri.2017.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.138

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research