Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Direct stochastic optical reconstruction microscopy with standard fluorescent probes

Abstract

Direct stochastic optical reconstruction microscopy (dSTORM) uses conventional fluorescent probes such as labeled antibodies or chemical tags for subdiffraction resolution fluorescence imaging with a lateral resolution of 20 nm. In contrast to photoactivated localization microscopy (PALM) with photoactivatable fluorescent proteins, dSTORM experiments start with bright fluorescent samples in which the fluorophores have to be transferred to a stable and reversible OFF state. The OFF state has a lifetime in the range of 100 milliseconds to several seconds after irradiation with light intensities low enough to ensure minimal photodestruction. Either spontaneously or photoinduced on irradiation with a second laser wavelength, a sparse subset of fluorophores is reactivated and their positions are precisely determined. Repetitive activation, localization and deactivation allow a temporal separation of spatially unresolved structures in a reconstructed image. Here we present a step-by-step protocol for dSTORM imaging in fixed and living cells on a wide-field fluorescence microscope, with standard fluorescent probes focusing especially on the photoinduced fine adjustment of the ratio of fluorophores residing in the ON and OFF states. Furthermore, we discuss labeling strategies, acquisition parameters, and temporal and spatial resolution. The ultimate step of data acquisition and data processing can be performed in seconds to minutes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dSTORM concept.
Figure 2: Reversible photoswitching of Alexa Fluor and ATTO dyes in the presence of thiols.
Figure 3: dSTORM acquisition procedure exemplified for Alexa Fluor 647–labeled β-tubulin in a COS-7 cell.
Figure 4: Simulated data demonstrating the influence of the ratio of photoswitching rates, r, on different complexities.
Figure 5: Scheme of experimental setup for single-molecule based localization microscopy with standard synthetic fluorophores.
Figure 6: dSTORM images of fixed COS-7 and living HeLa cells.

Similar content being viewed by others

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–487 (1873).

    Article  Google Scholar 

  2. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1997).

  3. Betzig, E. & Trautman, J.K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Hell, S. & Stelzer, E.H.K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 93, 277–282 (1992).

    Article  Google Scholar 

  5. Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Hell, SW. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bobroff, N. Position measurement with a resolution and noise limited instrument. Rev. Sci. Instrum. 57, 1152–1157 (1986).

    Article  Google Scholar 

  10. Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Bornfleth, H., Sätzler, K., Eils, R. & Cremer, C. High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microsc. 189, 118–136 (1998).

    Article  Google Scholar 

  12. Lacoste, Th.D. et al. Ultrahigh-resolution multicolour colocalization of single fluorescent probes. Proc. Natl Acad. Sci. USA 97, 9461–9466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heilemann, M. et al. High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal. Chem. 74, 3511–3517 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Qu, X., Wu, D., Mets, L. & Scherer, N.F. Nanometer-localized multiple single-molecule fluorescene microscopy. Proc. Natl Acad. Sci. USA 101, 11298–11303 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lidke, K.A., Rieger, B., Jovin, T.M. & Heintzmann, R. Superresolution by localization of quantum dots using blinking statistics. Opt. Exp. 13, 7052–7062 (2005).

    Article  Google Scholar 

  18. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  PubMed  Google Scholar 

  19. Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rust, M.J., Bates, B. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  22. Heilemann, M., van de Linde, S., Mukherjee, A. & Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Ed. 48, 6903–6908 (2009).

    Article  CAS  Google Scholar 

  23. Lemmer, P. et al. SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl. Phys. B 93, 1–12 (2008).

    Article  CAS  Google Scholar 

  24. Baddeley, D. et al. Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys. J. 96, L22–L24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gunkel, M. et al. Dual color localization microscopy of cellular nanostructures. Biotechnol. J. 4, 927–938 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc. 130, 16840–16841 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. & Tinnefeld, P. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc. Natl Acad. Sci. USA 106, 8107–8112 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast background-free 3D superresolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dertinger, T., Heilemann, M., Vogel, R., Sauer, M. & Weiss, S. Super-resolution optical fluctuation imaging with organic dyes. Angew. Chem. Int. Ed. 49, 9441–9443 (2010).

    Article  CAS  Google Scholar 

  31. Flors, C. et al. A stroboscopic approach for fast photoactivation-localization microscopy with dronpa mutants. J. Am. Chem. Soc. 129, 13970–13977 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Flors, C., Ravarani, C.N. & Dryden, D.T. Super-resolution imaging of DNA labeled with intercalating dyes. Chemphyschem 10, 2201–2204 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Gould, T.J., Verkhusha, V.V. & Hess, S.T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 4, 291–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shroff, H., White, H. & Betzig, E. Photoactivation localization microscopy (PALM) of adhesion complexes. Curr. Protoc. Cell Biol. 41, 4.21.1–4.21.27 (2008).

    Article  Google Scholar 

  35. Ji, N., Shroff, H., Zhong, H & Betzig, E. Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 18, 605–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Hell, S.W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heilemann, M. Fluorescence microscopy beyond the diffraction limit. J. Biotechnol. 149, 243–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Lippincott-Schwartz, J. & Patterson, G.H. Fluorescent proteins: a cell biologist's user guide. Methods Cell Biol. 85, 45–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Ormo, M. et al. Crystal structure of the Aequorea Victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Shannon, C.E. Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949).

    Google Scholar 

  44. Shaner, N.C. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang, J., Akerboom, J., Vaziri, A., Looger, L.L. & Shank, S.V. Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc. Natl Acad. Sci. USA 107, 10068–10073 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. van de Linde, S., Sauer, M. & Heilemann, M. Subdiffraction-resolution fluorescence imaging of proteins in the inner mitochondrial membrane with photoswitchable fluorophores. J. Struct. Biol. 164, 250–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. van de Linde, S., Kasper, R., Heilemann, M. & Sauer, M. Photoswitching microscopy with standard fluorophores. Appl. Phys. B. 93, 725–731 (2008).

    Article  CAS  Google Scholar 

  48. Heilemann, M., Dedecker, P., Hofkens, J. & Sauer, M. Photoswitches: key molecules for subdiffraction-resolution fluorescecne imaging and molecular quantification. Laser Photon. Rev. 3, 180–202 (2009).

    Article  CAS  Google Scholar 

  49. van de Linde, S. et al. Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem. Photobiol. Sci. 8, 465–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Owen, D.M. et al. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophotonics 3, 446–454 (2009).

    Article  CAS  Google Scholar 

  51. Endesfelder, U., van de Linde, S., Wolter, S., Sauer, M. & Heilemann, M. Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. Chemphyschem 11, 836–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Wombacher, R. et al. Live cell super-resolution imaging with trimethoprim conjugates. Nat. Methods 7, 717–719 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Klein, T. et al. Live-cell dSTORM with SNAP-tag fusion proteins. Nat. Methods 8, 7–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Wolter, S. et al. Real-time computation of subdiffraction-resolution fluorescence images,. J. Microsc. 237, 12–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Beaumont, P.C., Johnson, D.G. & Parsons, B.J. Excited state and free radical properties of rhodamine dyes in aqueous solution: a laser flash photolysis and pulse radiolysis study. J. Photochem. Photobiol. 107, 175–183 (1997).

    Article  CAS  Google Scholar 

  56. Doose, S., Neuweiler, H. & Sauer, M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chemphyschem 10, 1389–1398 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Görner, H. Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution. Photochem. Photobiol. Sci. 7, 371–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Burner, U., Jantschko, W. & Obinger, C. Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. FEBS Lett. 443, 290–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Burner, U. & Obinger, C. Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett. 411, 269–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Madej, E. & Wardman, P. The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physiological pH. Arch. Biochem. Biophys. 462, 94–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Wardmann, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18, 1637–1755 (1989).

    Article  Google Scholar 

  62. van de Linde, S. et al. Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem. Photobiol. Sci. 10, 499–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Michaelis, L., Schubert, M.P. & Granick, S. Semiquinone radicals of thiazines. J. Am. Chem. Soc. 62, 204–211 (1940).

    Article  CAS  Google Scholar 

  64. Heineken, F.W., Bruin, M. & Bruin, F. ESR investigation of some thiazine and oxazine dye radicals. J. Chem Phys. 37, 1479–1482 (1962).

    Article  CAS  Google Scholar 

  65. Kottke, T., van de Linde, S., Sauer, M., Kakorin, S. & Heilemann, M. Identification of the product of photoswitching of an oxazine fluorophore using FT-IR difference spectroscopy. J. Phys. Chem. Lett. 1, 3156–3159 (2010).

    Article  CAS  Google Scholar 

  66. Sies, H. Glutathione and its role in cellular functions. Free Radic. Biol. Med. 27, 916–921 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Benesch, R.E. & Benesch, R. Enzymatic removal of oxygen for polarography and related methods. Science 118, 447–448 (1953).

    Article  CAS  PubMed  Google Scholar 

  68. Rasnik, I., McKinney, S.A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lenhard, J.R. & Cameron, A.D. Electrochemistry and electronic spectra of cyanine dye radicals in acetonitrile. J. Phys. Chem. 97, 4916–4925 (1993).

    Article  CAS  Google Scholar 

  70. Dempsey, G.T. et al. Photoswitching mechanism of cyanine dyes. J. Am. Chem. Soc. 131, 18192–18193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lord, S.J. et al. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J. Am. Chem. Soc. 130, 9204–9205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, H.D. et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J. Am. Chem. Soc. 132, 15099–15101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fölling, J. et al. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. 46, 6266–6270 (2007).

    Article  CAS  Google Scholar 

  74. Bossi, M. et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett. 8, 2463–2468 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. van de Linde, S., Wolter, S., Heilemann, M. & Sauer, M. The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J. Biotechnol. 149, 260–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Cordes, T. et al. Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett. 10, 645–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Vogelsang, J. et al. Make them blink: probes for super-resolution microscopy. Chemphyschem 11, 2475–2490 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Pavani, S.R. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Juette, M.F. et al. Three-dimensional sub-100 nm resolution fluorescecne microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Huang, B., Wang, W.Q., Bates, M. & Zhuang, X.W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neubeck, A. & van Gool, L. Efficient non-maximum suppression. in ICPR '06: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, pp 850–855 (IEEE Computer Society, 2006).

  84. Galassi, M. et al. Gnu Scientific Library: Reference Manual (Network Theory, 2003).

  85. Yaroslavsky, L.P. Digital Picture Processing. (Springer, 1985).

  86. Thomann, D., Dorn, J., Sorger, P.K. & Danuser, G. Automatic fluorescent tag localization II: improvement in super-resolution by relative tracking. J. Microsc. 211, 230–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Hess, S.T. et al. Dynamic clustered distribution of hemaglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl Acad. Sci. USA 104, 17370–17375 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Miyawaki, A., Sawano, A. & Kogure, T. Lighting up cells: labelling proteins with fluorophores. Nat. Cell Biol. 5, S1–S7 (2003).

    Article  CAS  Google Scholar 

  91. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labelling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl Acad. Sci. USA 101, 9955–9959 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Miller, L.W. & Cornish, V.W. Selective chemical labeling of proteins in living cells. Curr. Opin. Chem. Biol. 9, 56–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Miller, L.W., Cai, Y., Sheetz, M.P. & Cornish, V.W. In vivo protein labelling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2, 255–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Gallagher, S. et al. An in vivo covalent TMP-tag based on proximity-induced reactivity. ACS Chem. Biol. 7, 547–556 (2009).

    Article  CAS  Google Scholar 

  99. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Robinson, R.W. & Snyder, J.A. An innovative fixative for cytoskeletal components allows high resolution in colocalization studies using immunofluorescence techniques. Histochem. Cell. Biol. 122, 1–5 (2004).

    CAS  PubMed  Google Scholar 

  101. Vogelsang, J. et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. Int. Ed. 47, 5465–5469 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from G. Wiebusch, B. Vogel, U. Endesfelder, T. Holm and S. Proppert. We thank V.W. Cornish and R. Wombacher for providing the TMP substrates and the H2B-eDHFR plasmid. This work was supported by the Biophotonics and the Systems Biology Initiative (FORSYS) of the German Ministry of Research and Education (BMBF).

Author information

Authors and Affiliations

Authors

Contributions

S.v.d.L., A.L., T.K., M. Heidbreder, S.W., M. Heilemann and M.S. conceived and designed the experiments; S.v.d.L., A.L., T.K., M. Heidbreder and S.W. performed the experiments; M. Heilemann and M.S. supervised the project; and M. Heilemann, S.v.d.L. and M.S. wrote the paper.

Corresponding author

Correspondence to Markus Sauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Linde, S., Löschberger, A., Klein, T. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6, 991–1009 (2011). https://doi.org/10.1038/nprot.2011.336

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing