Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of miR-145 and miR-146a as mediators of the 5q– syndrome phenotype

Abstract

5q– syndrome is a subtype of myelodysplastic syndrome characterized by severe anemia and variable neutropenia but normal or high platelet counts with dysplastic megakaryocytes. We examined expression of microRNAs (miRNAs) encoded on chromosome 5q as a possible cause of haploinsufficiency. We show that deletion of chromosome 5q correlates with loss of two miRNAs that are abundant in hematopoietic stem/progenitor cells (HSPCs), miR-145 and miR-146a, and we identify Toll–interleukin-1 receptor domain–containing adaptor protein (TIRAP) and tumor necrosis factor receptor–associated factor-6 (TRAF6) as respective targets of these miRNAs. TIRAP is known to lie upstream of TRAF6 in innate immune signaling. Knockdown of miR-145 and miR-146a together or enforced expression of TRAF6 in mouse HSPCs resulted in thrombocytosis, mild neutropenia and megakaryocytic dysplasia. A subset of mice transplanted with TRAF6-expressing marrow progressed either to marrow failure or acute myeloid leukemia. Thus, inappropriate activation of innate immune signals in HSPCs phenocopies several clinical features of 5q– syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression analysis of miRNAs located on chromosome 5q in MDS.
Figure 2: Stable knockdown of miR-145 and miR-146a in mouse marrow results in a 5q–like syndrome.
Figure 3: TIRAP and TRAF6 are targets of miR-145 and miR-146a, respectively.
Figure 4: TRAF6 expression in mouse marrow results in a syndrome similar to the 5q– syndrome and progression to either marrow failure or AML.
Figure 5: Paracrine effects of IL-6 contribute to hematopoietic defects in TRAF6-transduced mice.

Similar content being viewed by others

References

  1. Corey, S.J. et al. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat. Rev. Cancer 7, 118–129 (2007).

    Article  CAS  Google Scholar 

  2. Nilsson, L. et al. Isolation and characterization of hematopoietic progenitor/stem cells in 5q–deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 96, 2012–2021 (2000).

    CAS  PubMed  Google Scholar 

  3. Nilsson, L. et al. The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes. Blood 110, 3005–3014 (2007).

    Article  CAS  Google Scholar 

  4. Thanopoulou, E. et al. Engraftment of NOD/SCID-β2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 103, 4285–4293 (2004).

    Article  CAS  Google Scholar 

  5. Nimer, S.D. Myelodysplastic syndromes. Blood 111, 4841–4851 (2008).

    Article  CAS  Google Scholar 

  6. Li, X., Bryant, C.E. & Deeg, H.J. Simultaneous demonstration of clonal chromosome abnormalities and apoptosis in individual marrow cells in myelodysplastic syndrome. Int. J. Hematol. 80, 140–145 (2004).

    Article  Google Scholar 

  7. Giagounidis, A.A., Germing, U. & Aul, C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin. Cancer Res. 12, 5–10 (2006).

    Article  CAS  Google Scholar 

  8. Boultwood, J. et al. Narrowing and genomic annotation of the commonly deleted region of the 5q– syndrome. Blood 99, 4638–4641 (2002).

    Article  CAS  Google Scholar 

  9. Martíinez-Ramirez, A. et al. Analysis of myelodysplastic syndromes with complex karyotypes by high-resolution comparative genomic hybridization and subtelomeric CGH array. Genes Chromosom. Cancer 42, 287–298 (2005).

    Article  Google Scholar 

  10. Wang, L. et al. Genome-wide analysis of copy number changes and loss of heterozygosity in myelodysplastic syndrome with del(5q) using high-density single nucleotide polymorphism arrays. Haematologica 93, 994–1000 (2008).

    Article  Google Scholar 

  11. Ebert, B.L. et al. Identification of RPS14 as a 5q– syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    Article  CAS  Google Scholar 

  12. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  13. Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  Google Scholar 

  14. Gentner, B. et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat. Methods 6, 63–66 (2009).

    Article  CAS  Google Scholar 

  15. Bigoni, R. et al. Multilineage involvement in the 5q– syndrome: a fluorescent in situ hybridization study on bone marrow smears. Haematologica 86, 375–381 (2001).

    CAS  PubMed  Google Scholar 

  16. Kroef, M.J. et al. Mosaicism of the 5q deletion as assessed by interphase FISH is a common phenomenon in MDS and restricted to myeloid cells. Leukemia 11, 519–523 (1997).

    Article  CAS  Google Scholar 

  17. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  18. Taganov, K.D., Boldin, M.P., Chang, K.J. & Baltimore, D. NF-κB–dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  Google Scholar 

  19. Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor–associated factor 6 auto-ubiquitination is a critical determinant of I κ B kinase activation. J. Biol. Chem. 282, 4102–4112 (2007).

    Article  CAS  Google Scholar 

  20. Mansell, A., Brint, E., Gould, J.A., O'Neill, L.A. & Hertzog, P.J. Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-κB activation by Toll-like receptor (TLR)-2 and TLR4. J. Biol. Chem. 279, 37227–37230 (2004).

    Article  CAS  Google Scholar 

  21. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  Google Scholar 

  22. Nimer, S.D. Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J. Clin. Oncol. 24, 2576–2582 (2006).

    Article  CAS  Google Scholar 

  23. Kishimoto, T. Interleukin-6: from basic science to medicine—40 years in immunology. Annu. Rev. Immunol. 23, 1–21 (2005).

    Article  CAS  Google Scholar 

  24. Garzon, R. et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111, 3183–3189 (2008).

    Article  CAS  Google Scholar 

  25. Marcucci, G. et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1919–1928 (2008).

    Article  CAS  Google Scholar 

  26. Takada, S. et al. MicroRNA expression profiles of human leukemias. Leukemia 22, 1274–1278 (2008).

    Article  CAS  Google Scholar 

  27. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    Article  CAS  Google Scholar 

  28. Bhaumik, D. et al. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643–5647 (2008).

    Article  CAS  Google Scholar 

  29. Chen, H. et al. Interference with nuclear factor κ B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis. Oncogene 25, 6520–6527 (2006).

    Article  CAS  Google Scholar 

  30. Maratheftis, C.I., Andreakos, E., Moutsopoulos, H.M. & Voulgarelis, M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin. Cancer Res. 13, 1154–1160 (2007).

    Article  CAS  Google Scholar 

  31. Hofmann, W.K. et al. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 100, 3553–3560 (2002).

    Article  CAS  Google Scholar 

  32. Gondek, L.P. et al. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD and MDS-derived AML. Blood 111, 1534–1542 (2008).

    Article  CAS  Google Scholar 

  33. Starczynowski, D.T. et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 112, 3412–3424 (2008).

    Article  CAS  Google Scholar 

  34. Garzon, R. et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci. USA 105, 3945–3950 (2008).

    Article  CAS  Google Scholar 

  35. Garzon, R. et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111, 3183–3189 (2008).

    Article  CAS  Google Scholar 

  36. Jongen-Lavrencic, M., Sun, S.M., Dijkstra, M.K., Valk, P.J. & Lowenberg, B. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111, 5078–5085 (2008).

    Article  CAS  Google Scholar 

  37. Li, Z. et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl. Acad. Sci. USA 105, 15535–15540 (2008).

    Article  CAS  Google Scholar 

  38. Takada, S. et al. MicroRNA expression profiles of human leukemias. Leukemia 22, 1274–1278 (2008).

    Article  CAS  Google Scholar 

  39. Hast, R., Eriksson, M., Widell, S., Arvidsson, I. & Bemell, P. Neutrophil dysplasia is not a specific feature of the abnormal chromosomal clone in myelodysplastic syndromes. Leuk. Res. 23, 579–584 (1999).

    Article  CAS  Google Scholar 

  40. Herold, M., Schmalzl, F. & Zwierzina, H. Increased serum interleukin 6 levels in patients with myelodysplastic syndromes. Leuk. Res. 16, 585–588 (1992).

    Article  CAS  Google Scholar 

  41. Verhoef, G.E. et al. Measurement of serum cytokine levels in patients with myelodysplastic syndromes. Leukemia 6, 1268–1272 (1992).

    CAS  PubMed  Google Scholar 

  42. Hsu, H.C. et al. Circulating levels of thrombopoietic and inflammatory cytokines in patients with acute myeloblastic leukemia and myelodysplastic syndrome. Oncology 63, 64–69 (2002).

    Article  CAS  Google Scholar 

  43. Brandt, S.J., Bodine, D.M., Dunbar, C.E. & Nienhuis, A.W. Dysregulated interleukin 6 expression produces a syndrome resembling Castleman's disease in mice. J. Clin. Invest. 86, 592–599 (1990).

    Article  CAS  Google Scholar 

  44. Hawley, R.G., Fong, A.Z., Burns, B.F. & Hawley, T.S. Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J. Exp. Med. 176, 1149–1163 (1992).

    Article  CAS  Google Scholar 

  45. Corral, L.G. et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α. J. Immunol. 163, 380–386 (1999).

    CAS  PubMed  Google Scholar 

  46. Nagai, Y. et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801–812 (2006).

    Article  CAS  Google Scholar 

  47. Tang, M. et al. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J. Exp. Med. 205, 1611–1619 (2008).

    Article  CAS  Google Scholar 

  48. Antonchuk, J., Sauvageau, G. & Humphries, R.K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Exp. Hematol. 29, 1125–1134 (2001).

    Article  CAS  Google Scholar 

  49. Larrivée, B., Pollet, I. & Karsan, A. Activation of vascular endothelial growth factor receptor-2 in bone marrow leads to accumulation of myeloid cells: role of granulocyte-macrophage colony-stimulating factor. J. Immunol. 175, 3015–3024 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Deleeuw, R. Chari, W. Lockwood, S. Watson and E. Vucic for technical assistance and helpful discussions and M. Abbott for animal husbandry. K. Tohyama (Kawasaki Medical School) provided the MDS-L cell line. The NF-κB site–containing luciferase reporter plasmid was a gift from F. Jirik (University of Calgary). This work was supported by the Canadian Institutes of Health Research (CIHR; MOP 89976), Leukemia and Lymphoma Society of Canada and Canadian Cancer Society grants to A.K., a CIHR grant and a Terry Fox Foundation Program Project award to R.K.H., and a Stem Cell Network grant to M.M. D.T.S. is supported in part by CIHR and Michael Smith Foundation for Health Research (MSFHR) fellowships. M.M. and A.K. are Senior Scholars of the MSFHR.

Author information

Authors and Affiliations

Authors

Contributions

D.T.S. and A.K. participated in designing the research and drafting the manuscript; D.T.S. and S.S. performed experiments; F.K., B.A., A.M., and R.M. provided technical assistance and discussion; R.A.W. and R.B. provided human subject samples; D.H. and R.K.H. provided valuable advice and expertise; M.H. and M.M. provided reagents and expertise in small RNA sequencing; W.L. provided valuable reagents and expertise in array comparative genomic hybridization.

Corresponding author

Correspondence to Aly Karsan.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–9 and Supplementary Methods (PDF 7476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starczynowski, D., Kuchenbauer, F., Argiropoulos, B. et al. Identification of miR-145 and miR-146a as mediators of the 5q– syndrome phenotype. Nat Med 16, 49–58 (2010). https://doi.org/10.1038/nm.2054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing