Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into the initiation of TCR signaling

Abstract

The initiation of T cell antigen receptor signaling is a key step that can result in T cell activation and the orchestration of an adaptive immune response. Early events in T cell receptor signaling can distinguish between agonist and endogenous ligands with exquisite selectivity, and show extraordinary sensitivity to minute numbers of agonists in a sea of endogenous ligands. We review our current knowledge of models and crucial molecules that aim to provide a mechanistic explanation for these observations. Building on current understanding and a discussion of unresolved issues, we propose a molecular model for initiation of T cell receptor signaling that may serve as a useful guide for future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of kinetic proofreading.
Figure 2: Schematic representation of the mechanosensor model of TCR signal initiation.
Figure 3: The regulation of Lck by phosphorylation.
Figure 4: TCR activation as a consequence of the combined relocalization of CD4 and CD8 coreceptors and bound Lck.

Similar content being viewed by others

References

  1. Huang, J. et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity 39, 846–857 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Purbhoo, M.A., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J. & Eisen, H.N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Gascoigne, N.R. & Palmer, E. Signaling in thymic selection. Curr. Opin. Immunol. 23, 207–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Hopfield, J.J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKeithan, T.W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92, 5042–5046 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lalanne, J.B. & Francois, P. Principles of adaptive sorting revealed by in silico evolution. Phys. Rev. Lett. 110, 218102 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Iwashima, M., Irving, B.A., van Oers, N.S., Chan, A.C. & Weiss, A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136–1139 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Samelson, L.E., Davidson, W.F., Morse, H.C. III & Klausner, R.D. Abnormal tyrosine phosphorylation on T-cell receptor in lymphoproliferative disorders. Nature 324, 674–676 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Straus, D.B. & Weiss, A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70, 585–593 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. van Oers, N.S., Killeen, N. & Weiss, A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J. Exp. Med. 183, 1053–1062 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ɛ cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandes, R.A. et al. What controls T cell receptor phosphorylation? Cell 142, 668–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Li, F.Y. et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Oers, N.S., Killeen, N. & Weiss, A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCRζ in murine thymocytes and lymph node T cells. Immunity 1, 675–685 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. van Oers, N.S. et al. Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) ζ subunit: regulation of TCR-associated protein tyrosine kinase activity by TCRζ. Mol. Cell. Biol. 13, 5771–5780 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dorfman, J.R., Stefanova, I., Yasutomo, K. & Germain, R.N. CD4+ T cell survival is not directly linked to self-MHC-induced TCR signaling. Nat. Immunol. 1, 329–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, S.T. et al. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, S.T. et al. Distinctive CD3 heterodimeric ectodomain topologies maximize antigen-triggered activation of αβ T cell receptors. J. Immunol. 185, 2951–2959 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Yoon, S.T., Dianzani, U., Bottomly, K. & Janeway, C.A. Jr. Both high and low avidity antibodies to the T cell receptor can have agonist or antagonist activity. Immunity 1, 563–569 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Lanier, L.L., Ruitenberg, J.J., Allison, J.P. & Weiss, A. Distinct epitopes on the T cell antigen receptor of HPB-ALL tumor cells identified by monoclonal antibodies. J. Immunol. 137, 2286–2292 (1986).

    CAS  PubMed  Google Scholar 

  26. Adams, J.J. et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35, 681–693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, S.T. et al. TCR mechanobiology: torques and tunable structures linked to early T cell signaling. Front. Immunol. 3, 76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huppa, J.B. et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, B., Chen, W., Evavold, B.D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O'Donoghue, G.P., Pielak, R.M., Smoligovets, A.A., Lin, J.J. & Groves, J.T. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife 2, e00778 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Govern, C.C., Paczosa, M.K., Chakraborty, A.K. & Huseby, E.S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl. Acad. Sci. USA 107, 8724–8729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aleksic, M. et al. Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32, 163–174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant αβ T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Borroto, A. et al. Relevance of Nck-CD3 epsilon interaction for T cell activation in vivo. J. Immunol. 192, 2042–2053 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Gil, D., Schamel, W.W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Risueno, R.M., Schamel, W.W. & Alarcon, B. T cell receptor engagement triggers its CD3ɛ and CD3ζ subunits to adopt a compact, locked conformation. PLoS ONE 3, e1747 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lettau, M., Pieper, J. & Janssen, O. Nck adapter proteins: functional versatility in T cells. Cell Commun. Signal. 7, 1 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mingueneau, M. et al. The proline-rich sequence of CD3ɛ controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nat. Immunol. 9, 522–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Tailor, P. et al. The proline-rich sequence of CD3ɛ as an amplifier of low-avidity TCR signaling. J. Immunol. 181, 243–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Davis, S.J. & van der Merwe, P.A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Qi, S.Y., Groves, J.T. & Chakraborty, A.K. Synaptic pattern formation during cellular recognition. Proc. Natl. Acad. Sci. USA 98, 6548–6553 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. James, J.R. & Vale, R.D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cordoba, S. et al. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121, 4295–4302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Irles, C. et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat. Immunol. 4, 189–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Pingel, J.T. & Thomas, M.L. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58, 1055–1065 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koretzky, G.A., Picus, J., Schultz, T. & Weiss, A. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc. Natl. Acad. Sci. USA 88, 2037–2041 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koretzky, G.A., Picus, J., Thomas, M.L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidylinositol pathway. Nature 346, 66–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Baker, J.E., Majeti, R., Tangye, S.G. & Weiss, A. Protein tyrosine phosphatase CD148-mediated inhibition of T-cell receptor signal transduction is associated with reduced LAT and phospholipase Cγ1 phosphorylation. Mol. Cell. Biol. 21, 2393–2403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, J. & Weiss, A. The tyrosine phosphatase CD148 is excluded from the immunologic synapse and down-regulates prolonged T cell signaling. J. Cell Biol. 162, 673–682 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chow, L.M., Fournel, M., Davidson, D. & Veillette, A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 365, 156–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Veillette, A., Latour, S. & Davidson, D. Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20, 669–707 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. McNeill, L. et al. The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity 27, 425–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Mustelin, T., Coggeshall, K.M. & Altman, A. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. USA 86, 6302–6306 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ostergaard, H.L. et al. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. USA 86, 8959–8963 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pingel, S., Baker, M., Turner, M., Holmes, N. & Alexander, D.R. The CD45 tyrosine phosphatase regulates CD3-induced signal transduction and T cell development in recombinase-deficient mice: restoration of pre-TCR function by active p56(lck). Eur. J. Immunol. 29, 2376–2384 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Sieh, M., Bolen, J.B. & Weiss, A. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J. 12, 315–321 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zikherman, J. et al. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity 32, 342–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hermiston, M.L., Zikherman, J. & Zhu, J.W. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol. Rev. 228, 288–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, J.W., Brdicka, T., Katsumoto, T.R., Lin, J. & Weiss, A. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity 28, 183–196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alexander, D.R. The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function. Semin. Immunol. 12, 349–359 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Baker, M. et al. Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice. EMBO J. 19, 4644–4654 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Veillette, A., Rhee, I., Souza, C.M. & Davidson, D. PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunol. Rev. 228, 312–324 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Zikherman, J., Doan, K., Parameswaran, R., Raschke, W. & Weiss, A. Quantitative differences in CD45 expression unmask functions for CD45 in B-cell development, tolerance, and survival. Proc. Natl. Acad. Sci. USA 109, E3–E12 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Zikherman, J., Parameswaran, R. & Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489, 160–164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cloutier, J.F. & Veillette, A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med. 189, 111–121 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schoenborn, J.R., Tan, Y.X., Zhang, C., Shokat, K.M. & Weiss, A. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci. Signal. 4, ra59 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tan, Y.X. et al. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat. Immunol. 15, 186–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Davis, M.M. et al. T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25, 681–695 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Hoerter, J.A. et al. Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC. J. Exp. Med. 210, 1807–1821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krogsgaard, M. et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Li, Q.J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Valitutti, S., Muller, S., Cella, M. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Coombs, D., Kalergis, A.M., Nathenson, S.G., Wofsy, C. & Goldstein, B. Activated TCRs remain marked for internalization after dissociation from pMHC. Nat. Immunol. 3, 926–931 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Holler, P.D. & Kranz, D.M. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18, 255–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Altan-Bonnet, G. & Germain, R.N. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol. 3, e356 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Das, J. et al. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136, 337–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xie, J. et al. Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be 'preferentially' transported to the cSMAC. Nat. Immunol. 13, 674–680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lo, W.L. et al. An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nat. Immunol. 10, 1155–1161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nakayama, T., Singer, A., Hsi, E.D. & Samelson, L.E. Intrathymic signalling in immature CD4+CD8+ thymocytes results in tyrosine phosphorylation of the T-cell receptor ζ-chain. Nature 341, 651–654 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Persaud, S.P., Parker, C.R., Lo, W.L., Weber, K.S. & Allen, P.M. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat. Immunol. 15, 266–274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40, 235–247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Krogsgaard, M., Juang, J. & Davis, M.M. A role for “self” in T-cell activation. Semin. Immunol. 19, 236–244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Janeway, C.A. Jr., Travers, P., Walport, M. & Shlomchik, M. Immunobiology: The Immune System in Health and Disease 5th edn. (Garland Science, 2001).

  85. Luescher, I.F. et al. CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature 373, 353–356 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Wooldridge, L. et al. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. J. Biol. Chem. 280, 27491–27501 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Gao, G.F., Rao, Z. & Bell, J.I. Molecular coordination of αβ T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. Trends Immunol. 23, 408–413 (2002).

    Article  PubMed  Google Scholar 

  88. Artyomov, M.N., Lis, M., Devadas, S., Davis, M.M. & Chakraborty, A.K. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl. Acad. Sci. USA 107, 16916–16921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Veillette, A., Bookman, M.A., Horak, E.M., Samelson, L.E. & Bolen, J.B. Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature 338, 257–259 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stirnweiss, A. et al. T cell activation results in conformational changes in the Src family kinase Lck to induce its activation. Sci. Signal. 6, ra13 (2013).

    Article  PubMed  CAS  Google Scholar 

  94. Rossy, J., Owen, D.M., Williamson, D.J., Yang, Z. & Gaus, K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat. Immunol. 14, 82–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Mandl, J.N., Monteiro, J.P., Vrisekoop, N. & Germain, R.N. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 38, 263–274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yan, Q. et al. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol. Cell. Biol. 33, 2188–2201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brdicka, T., Kadlecek, T.A., Roose, J.P., Pastuszak, A.W. & Weiss, A. Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Mol. Cell. Biol. 25, 4924–4933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pelosi, M. et al. Tyrosine 319 in the interdomain B of ZAP-70 is a binding site for the Src homology 2 domain of Lck. J. Biol. Chem. 274, 14229–14237 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Hsu, L.Y., Tan, Y.X., Xiao, Z., Malissen, M. & Weiss, A. A hypomorphic allele of ZAP-70 reveals a distinct thymic threshold for autoimmune disease versus autoimmune reactivity. J. Exp. Med. 206, 2527–2541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, H. & Littman, D.R. A kinase-independent function of Lck in potentiating antigen-specific T cell activation. Cell 74, 633–643 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Fruschicheva for help with the references. We also thank K. Vicari of the Nature Publishing Group for her artistic work on the figures in this article. This work was supported, in part, by a grant from the US National Institutes of Health (PO1 AI091580 to A.K.C. and A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Weiss, A. Insights into the initiation of TCR signaling. Nat Immunol 15, 798–807 (2014). https://doi.org/10.1038/ni.2940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing