CONJUGATED polymers are organic semiconductors, the semiconducting behaviour being associated with the π molecular orbitals delocalized along the polymer chain. Their main advantage over non-polymeric organic semiconductors is the possibility of processing the polymer to form useful and robust structures. The response of the system to electronic excitation is nonlinear—the injection of an electron and a hole on the conjugated chain can lead to a self-localized excited state which can then decay radiatively, suggesting the possibility of using these materials in electroluminescent devices. We demonstrate here that poly(p-phenylene vinylene), prepared by way of a solution-processable precursor, can be used as the active element in a large-area light-emitting diode. The combination of good structural properties of this polymer, its ease of fabrication, and light emission in the green–yellow part of the spectrum with reasonably high efficiency, suggest that the polymer can be used for the development of large-area light-emitting displays.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Vincent, P. S., Barlow, W. A., Hann, R. A. & Roberts, G. G. Thin Solid Films 94, 476–488 (1982).
Tang, C. W. & VanSlyke, S. A. Appl. Phys. Lett. 51, 913–915 (1987).
Tang, C. W., VanSlyke, S. A. & Chen, C. H. J. appl. Phys. 65, 3610–3616 (1989).
Adachi, C., Tokito, S., Tsutsui, T. & Saito, S. Jap. J. appl. Phys. 27, 59–61 (1988).
Adachi, C., Tsutsui, T. & Saito, S. Appl. Phys. Lett. 55, 1489–1491 (1989).
Adachi, C., Tsutsui, T. & Saito, S. Appl. Phys. Lett. 56, 799–801 (1989).
Nohara, M., Hasegawa, M., Hosohawa, C., Tokailin, H. & Kusomoto, T. Chem. Lett. 189–190 (1990).
Basescu, N. et al. Nature 327, 403–405 (1987).
Friend, R. H., Bradley, D. D. C. & Townsend, P. D. J. Phys. D20, 1367–1384 (1987).
Bradley, D. D. C. & Friend, R. H. J. Phys.: Condensed Matter 1, 3671–3678 (1989).
Bradley, D. D. C. J. Phys. D20, 1389–1410 (1987).
Murase, I., Ohnishi, T., Noguchi, T. & Hirooka, M. Synthetic Metals 17, 639–644 (1987).
Stenger-Smith, J. D., Lenz, R. W. & Wegner, G. Polymer 30, 1048–1053 (1989).
Bellingham, J. R., Phillips, W. A. & Adkins, C. J. J. Phys.: Condensed Matter 2, 6207–6221 (1990).
Fesser, K., Bishop, A. R. & Campbell, D. K. Phys. Rev. B27, 4804–4825 (1983).
Brazovskii, S. A. & Kirova, N. N. JEPT Lett. 33, 4–8 (1981).
Bradley, D. D. C. et al. Springer Ser. Solid St. Sci. 76, 107–112 (1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Burroughes, J., Bradley, D., Brown, A. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990). https://doi.org/10.1038/347539a0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/347539a0
This article is cited by
-
PdNPs/NiNWs as a welding tool for the synthesis of polyfluorene derivatives by Suzuki polycondensation under microwave radiation
Scientific Reports (2024)
-
Highly Red Emissive Conjugated Homopolymers Based on Double B←N Bridged Bipyridine Unit
Chinese Journal of Polymer Science (2024)
-
Charge transport and near-infrared emission properties of semiconducting polymers
Polymer Journal (2023)
-
Visualizing electroluminescence process in light-emitting electrochemical cells
Nature Communications (2023)
-
Electrically driven organic laser using integrated OLED pumping
Nature (2023)