Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange

Abstract

Stimulation of β2-adrenergic receptors on the cell surface by adrenaline or noradrenaline leads to alterations in the metabolism, excitability, differentiation and growth of many cell types. These effects have traditionally been thought to be mediated exclusively by receptor activation of intracellular G proteins1. However, certain physiological effects of β2-adrenergic receptor stimulation, notably the regulation of cellular pH by modulation of Na+/H+ exchanger (NHE) function, do not seem to be entirely dependent on G-protein activation2,3,4,5,6,7. We report here a direct agonist-promoted association of the β2-adrenergic receptor with the Na+/H+ exchanger regulatory factor (NHERF), a protein that regulates the activity of the Na+/H+ exchanger type 3 (NHE3)8. NHERF binds to the β2-adrenergic receptor by means of a PDZ-domain-mediated interaction with the last few residues of the carboxy-terminal cytoplasmic domain of the receptor. Mutation ofthe final residue of the β2-adrenergic receptor from leucine toalanine abolishes the receptor's interaction with NHERF andalso markedly alters β2-adrenergic receptor regulation of NHE3 in cells without altering receptor-mediated activation of adenylyl cyclase. Our findings indicate that agonist-dependent β2-adrenergic receptor binding of NHERF plays a role in β2-adrenergic receptor-mediated regulation of Na+/H+ exchange.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Purification of a β2-receptor tail interacting protein.
Figure 2: a, NHERF binds to the C-terminal 10 amino acids of the β2-receptor tail.
Figure 3: NHERF co-localizes in cells with full-length wild-type β2 receptor, but not with full-length L413A mutant β2 receptor, after receptor stimulation with agonist.
Figure 4: β2-receptor tail–GST fusion protein blocks the ability of NHERF to regulate NHE3.
Figure 5: Agonist stimulation of L413A mutant β2 receptors but not wild-type β2 receptors inhibits NHE3 in whole cells.

Similar content being viewed by others

References

  1. Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–688 (1991).

    Article  CAS  Google Scholar 

  2. Barber, D. L., McGuire, M. E. & Ganz, M. B. β-Adrenergic and somatostatin receptors regulate Na–H exchange independent of cAMP. J. Biol. Chem. 264, 21038–21042 (1989).

    CAS  PubMed  Google Scholar 

  3. Ganz, M. B., Pachter, J. A. & Barber, D. L. Multiple receptors coupled to adenylate cyclase regulate Na–H exchange independent of cAMP. J. Biol. Chem. 265, 8989–8992 (1990).

    CAS  PubMed  Google Scholar 

  4. Barber, D. L. & Ganz, M. B. Guanine nucleotides regulate β-adrenergic activation of Na–H exchange independently of receptor coupling to Gs. J. Biol. Chem. 267, 20607–20612 (1992).

    CAS  PubMed  Google Scholar 

  5. Barber, D. L., Ganz, M. B., Bongiorno, P. B. & Strader, C. D. Mutant constructs of the β-adrenergic receptor that are uncoupled from adenylyl cyclase retain functional activation of Na–H exchange. Mol. Pharmacol. 41, 1056–1060 (1992).

    CAS  PubMed  Google Scholar 

  6. Bellow-Reuss, E. Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am. J. Physiol. 238, F347–F352 (1980).

    Google Scholar 

  7. Weinmann, E. J., Sansom, S. C., Knight, T. F. & Senekjian, H. O. Alpha and beta adrenergic agonists stimulate water absorption in the rat proximal tubule. J. Membrane Biol. 69, 107–111 (1982).

    Article  Google Scholar 

  8. Weinman, E. J., Steplock, D., Wang, Y. & Shenolikar, S. Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na+–H+ exchanger. J. Clin. Invest. 95, 2143–2149 (1995).

    Article  CAS  Google Scholar 

  9. Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 139, 169–179 (1997).

    Article  CAS  Google Scholar 

  10. Weinman, E. J., Steplock, D. & Shenolikar, S. cAMP-mediated inhibition of the renal brush border membrane Na+–H+ exchanger requires a dissociable protein cofactor. J. Clin. Invest. 92, 1781–1786 (1993).

    Article  CAS  Google Scholar 

  11. Sheng, M. PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17, 575–578 (1996).

    Article  CAS  Google Scholar 

  12. Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Songyang, Z.et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  Google Scholar 

  14. Yun, C. H. C.et al. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl Acad. Sci. USA 94, 3010–3015 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Cabado, A. G.et al. Distinct structural domains confer cAMP sensitivity and ATP dependence to the Na+/H+ exchanger NHE3 isoform. J. Biol. Chem. 271, 3590–3599 (1996).

    Article  CAS  Google Scholar 

  16. Kurashima, K.et al. Identification of sites required for down-regulation of Na+/H+ exchanger NHE3 activity by cAMP-dependent protein kinase. Phosphorylation-dependent and -independent mechanisms. J. Biol. Chem. 272, 28672–28675 (1997).

    Article  CAS  Google Scholar 

  17. Weinman, E. J. & Shenolikar, S. Regulation of the renal brush border membrane Na+/H+ exchanger. Annu. Rev. Physiol. 55, 289–304 (1993).

    Article  CAS  Google Scholar 

  18. Noel, J. & Pouyssegur, J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am. J. Physiol. 268, C283–C296 (1995).

    Article  CAS  Google Scholar 

  19. Orlowski, J. & Grinstein, S. Na+/H+ exchangers of mammalian cells. J. Biol. Chem. 272, 22373–22376 (1997).

    Article  CAS  Google Scholar 

  20. Kahn, A. M., Dolson, G. M., Hise, M. K., Bennett, S. C. & Weinman, E. J. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am. J. Physiol. 248, F212–F218 (1985).

    CAS  PubMed  Google Scholar 

  21. Dolson, G. M., Hise, M. K. & Weinman, E. J. Relationship among parathyroid hormone, cAMP and calcium in proximal tubule sodium transport. Am. J. Physiol. 249, F409–F416 (1985).

    Article  CAS  Google Scholar 

  22. Weinman, E. J., Shenolikar, S. & Kahn, A. M. cAMP-associated inhibition of Na+–H+ exchanger in rabbit kidney brush-border membranes. Am. J. Physiol. 252, F19–F25 (1987).

    CAS  PubMed  Google Scholar 

  23. Agus, Z. S., Puschett, J. B., Senesky, D. & Goldberg, M. Mode of action of parathyroid hormone and cyclic adenosine 3′–5′ monophosphate on renal-tubular phosphate reabsorption in the dog. J. Clin. Invest. 50, 617–626 (1971).

    Article  CAS  Google Scholar 

  24. Ferguson, S. S. G., Barak, L. S., Zhang, J. & Caron, M. G. G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol. 74, 1095–1110 (1996).

    Article  CAS  Google Scholar 

  25. Strader, C. D.et al. The carboxyl terminus of the hamster β-adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Cell 49, 855–863 (1987).

    Article  CAS  Google Scholar 

  26. Bouvier, M.et al. Removal of phosphorylation sites from the β2-adrenergic receptor delays the onset of agonist-promoted desensitization. Nature 333, 370–373 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Cheung, A. H., Sigal, I. S., Dixon, R. A. F. & Strader, C. D. Agonist-promoted sequestration of the β2-adrenergic receptor requires regions involved in functional coupling to Gs. Mol. Pharmacol. 35, 132–138 (1989).

    CAS  PubMed  Google Scholar 

  28. Opperman, M.et al. Monoclonal antibodies reveal receptor specificity among G protein-coupled receptor kinases. Proc. Natl Acad. Sci. USA 93, 7649–7654 (1996).

    Article  ADS  Google Scholar 

  29. Barak, L. S., Ferguson, S. S. G., Zhang, J. & Caron, M. G. Aβ-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol. Chem. 272, 27497–27500 (1997).

    Article  CAS  Google Scholar 

  30. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. Amutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Shannon for peptide sequencing; T. Kurose for the β2 receptor tail GST fusion protein construct; N. Freedman for the Flag-tagged wild-type β2 receptor construct; J. Raymond for advice; G. Irons, D.Steplock and K. Tate for technical assistance; and D. Addison and M. Holben for help in preparing the manuscript. This work was supported in part by grants from the NIH to R.J.L. and E.J.W. and from theDuke Comprehensive Cancer Center to S.S.; C.W.C. is the recipient of a clinician–scientist award fromthe Department of Medicine at the University of Toronto; A.C. is a recipient of a postdoctoral fellowship from the Heart and Stroke Foundation of Canada; and S.G. is an international scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lefkowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, R., Premont, R., Chow, CW. et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630 (1998). https://doi.org/10.1038/33458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing