Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types

Abstract

We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression in a given tissue. We applied our approach to gene expression data from several sources together with GWAS summary statistics for 48 diseases and traits (average N = 169,331) and found significant tissue-specific enrichments (false discovery rate (FDR) < 5%) for 34 traits. In our analysis of multiple tissues, we detected a broad range of enrichments that recapitulated known biology. In our brain-specific analysis, significant enrichments included an enrichment of inhibitory over excitatory neurons for bipolar disorder, and excitatory over inhibitory neurons for schizophrenia and body mass index. Our results demonstrate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the approach.
Fig. 2: Results of the multiple-tissue analysis for selected traits.
Fig. 3: Validation of gene expression results with chromatin data.
Fig. 4: Results of the brain analysis for selected traits.
Fig. 5:  Results of the immune analysis for selected traits.

Similar content being viewed by others

References

  1. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  2. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. GTEx Consortium. The Genotype–Tissue Expression (GTEx) pilot analysis: multi-tissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  4. Ernst, J. et al. Mapping and analysis of chromatin-state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Farh, K. K.-H. et al. Genetic and epigenetic fine-mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, Y. & Kellis, M. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases. Nucleic Acids Res. 44, e144 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. Nat. Genet. 49, 1676-1683 (2016).

  14. Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 496–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slowikowski, K., Hu, X. & Raychaudhuri, S. SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci. Bioinformatics 30, 2496–2497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene-dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akbarian, S. et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heng, T. S. P. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Sudlow, C. et al. UK Biobank: an open-access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Preprint at bioRxiv https://doi.org/10.1101/048991 (2016).

  25. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  27. International League Against Epilepsy Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 13, 893–903 (2014).

    Article  CAS  Google Scholar 

  28. Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511–521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Traylor, M. et al. Genetic risk factors for ischemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 11, 951–962 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Patsopoulos, N. A. et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol. 70, 897–912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  33. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bradfield, J. P. et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 7, e1002293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dubois, P. C. A. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cordell, H. J. et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat. Commun. 6, 8019 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tfelt-Hansen, P. C. & Koehler, P. J. One hundred years of migraine research: major clinical and scientific observations from 1910 to 2010. Headache 51, 752–778 (2011).

    Article  PubMed  Google Scholar 

  46. Hanford, L. C., Nazarov, A., Hall, G. B. & Sassi, R. B. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord. 18, 4–18 (2016).

    Article  PubMed  Google Scholar 

  47. Callicott, J. H. et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb. Cortex 10, 1078–1092 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Medic, N. et al. Increased body mass index is associated with specific regional alterations in brain structure. Int. J. Obes. 40, 1177–1182 (2016).

    Article  CAS  Google Scholar 

  49. Maleki, N. et al. Migraine attacks the basal ganglia. Mol. Pain 7, 71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sakai, T. et al. Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 28, 143–150 (2008).

    Article  PubMed  Google Scholar 

  52. Benes, F. M. & Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Dhirapong, A. et al. B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 53, 527–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, J. et al. Ongoing activation of autoantigen-specific B cells in primary biliary cirrhosis. Hepatology 60, 1708–1716 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, K. L. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci. 20, 1052–1061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lloyd, C. M. & Hessel, E. M. Functions of T cells in asthma: more than just TH2 cells. Nat. Rev. Immunol. 10, 838–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Müller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. & Gay, S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1, 102–110 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Barbosa, I. G., Machado-Vieira, R., Soares, J. C. & Teixeira, A. L. The immunology of bipolar disorder. Neuroimmunomodulation 21, 117–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Steiner, J. et al. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur. Arch. Psychiatry Clin. Neurosci. 260, 509–518 (2010).

    Article  PubMed  Google Scholar 

  63. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gazal, S. et al. Linkage-disequilibrium-dependent architecture of human complex traits reveals action of negative selection. Nat. Genet. 49, 1421–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet. 99, 139–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed model association for biobank-scale data sets. Preprint at bioRxiv https://doi.org/10.1101/194944 (2017).

  71. Backenroth, D. et al. Tissue-specific functional effect prediction of genetic variation and applications to complex trait genetics. Preprint at bioRxiv https://doi.org/10.1101/069229 (2016).

  72. Wilens, T. E., Biederman, J. & Spencer, T. J. Attention deficit or hyperactivity disorder across the lifespan. Annu. Rev. Med. 53, 113–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Davis, L. K. et al. Partitioning the heritability of Tourette syndrome and obsessive–compulsive disorder reveals differences in genetic architecture. PLoS Genet. 9, e1003864 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gagliano, S. A. et al. Genomics implicates adaptive and innate immunity in Alzheimer’s and Parkinson’s diseases. Ann. Clin. Transl. Neurol 3, 924–933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rege, S. & Hodgkinson, S. J. Immune dysregulation and autoimmunity in bipolar disorder: synthesis of the evidence and its clinical application. Aust. N. Z. J. Psychiatry 47, 1136–1151 (2013).

    Article  PubMed  Google Scholar 

  78. Elamin, I., Edwards, M. J. & Martino, D. Immune dysfunction in Tourette syndrome. Behav. Neurol. 27, 23–32 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jin, W., Millar, J. S., Broedl, U., Glick, J. M. & Rader, D. J. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 111, 357–362 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Broedl, U. C. et al. Endothelial lipase promotes the catabolism of ApoB-containing lipoproteins. Circ. Res. 94, 1554–1561 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Feingold, K. R. & Grunfeld, C. The role of HDL in innate immunity. J. Lipid Res. 52, 1–3 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lo, J. C. et al. Lymphotoxin-β-receptor-dependent control of lipid homeostasis. Science 316, 285–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Harrison, D. G. The immune system in hypertension. Trans. Am. Clin. Climatol. Assoc. 125, 130–138 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Zlotnikov-Klionsky, Y. et al. Perforin-positive dendritic cells exhibit an immunoregulatory role in metabolic syndrome and autoimmunity. Immunity 43, 776–787 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Mancuso, N. et al. Integrating gene expression with summary-association statistics to identify genes associated with 30 complex traits. Am. J. Hum. Genet. 100, 473–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to R. Herbst, E. Hodis, F. Hormozdiari, M. Kanai, T. Pers, S. Riesenfeld, J. Ulirsch and A. Veres for helpful comments. This research was conducted using the UK Biobank Resource (application number: 16549). This research was funded by NIH grants R01 MH107649 (H.K.F., S.G., B.M.N., A.L.P.), R01 MH109978 (A.G., A.L.P.), U01 CA194393 (H.K.F., A.L.P.) and U01 HG009379 (S.R., A.L.P.). H.K.F. was also supported by the Fannie and John Hertz Foundation and by Eric and Wendy Schmidt. Data on neuron types were generated as part of the PsychENCODE Consortium, supported by: U01MH103392 (S. Akbarian, Icahn School of Medicine at Mount Sinai; P. Sklar, Icahn School of Medicine at Mount Sinai), U01MH103365 (F. Vaccarino, Yale University; M. Gerstein, Yale University; S. Weissman, Yale University), U01MH103346 (P. Farnham, University of Southern California; J. A. Knowles, University of Southern California), U01MH103340 (C. Liu, SUNY Upstate Medical University; K. White, University of Chicago), U01MH103339 (N. Sestan, Yale University; M. State, University of California, San Francisco), R21MH109956 (A. Jaffe, Lieber Institute for Brain Development), R21MH105881 (D. Pinto, Icahn School of Medicine at Mount Sinai), R21MH105853 (A. Jaffe, Lieber Institute for Brain Development; D. Weinberger, Lieber Institute for Brain Development), R21MH103877 (S. Dracheva, Icahn School of Medicine at Mount Sinai; S. Akbarian, Icahn School of Medicine at Mount Sinai), R21MH102791 (A. Jaffe, Lieber Institute for Brain Development), R01MH111721 (F. Goes, Johns Hopkins University; T. Hyde, Lieber Institute for Brain Development), R01MH110928 (M. State, University of California, San Francisco; S. Sanders, University of California, San Francisco; J. Willsey, University of California, San Francisco), R01MH110927 (D. Geschwind, University of California, Los Angeles), R01MH110926 (N. Sestan, Yale University), R01MH110921 (P. Sklar, Icahn School of Medicine at Mount Sinai), R01MH110920 (C. Liu, SUNY Upstate Medical University), R01MH110905 (K. White, University of Chicago), R01MH109715 (D. Pinto, Icahn School of Medicine at Mount Sinai), R01MH109677 (P. Roussos, Icahn School of Medicine at Mount Sinai), R01MH105898, (P. Zandi, Johns Hopkins University; T. M. Hyde, Lieber Institute for Brain Development), R01MH094714, (D. Geschwind, University of California, Los Angeles), P50MH106934, (N. Sestan, Yale University), R01MH105472 (G. Crawford, Duke University; P. Sullivan, University of North Carolina).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

H.K.F. and A.L.P. designed the study; H.K.F., Y.A.R., K.S. and S.P. analyzed data; H.K.F. and A.L.P. wrote the manuscript with assistance from Y.A.R., V.A., K.S., A.G., A.B., S.G., P.-R.L., C.L., N.S., G.G., A.S., E.M., S.P., J.R.B.P., J.D.B., B.E.B., S.R., S.M. and B.M.N.

Corresponding authors

Correspondence to Hilary K. Finucane or Alkes L. Price.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Note

Life Sciences Reporting Summary

Supplementary Tables

Supplementary Tables 1–16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finucane, H.K., Reshef, Y.A., Anttila, V. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet 50, 621–629 (2018). https://doi.org/10.1038/s41588-018-0081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0081-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing