Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

How ancient RNA survives and what we can learn from it

Although normally transient, RNA can persist postmortem when preserved by cold, desiccation or chemical treatment. In this Comment, we discuss how ancient RNA enables the study of gene expression of (pre)historic viruses, plants and animals going back at least as far as the last Ice Age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Rollo, F. Characterisation by molecular hybridization of RNA fragments isolated from ancient (1400 B.C.) seeds. Theor. Appl. Genet. 71, 330–333 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Mármol-Sánchez, E. et al. Historical RNA expression profiles from the extinct Tasmanian tiger. Genome Res. 33, 1299–1316 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Worobey, M. Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influenza A virus. J. Virol. 82, 3769–3774 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koopmans, M. et al. Optimization of extraction and PCR amplification of RNA extracts from paraffin-embedded tissue in different fixatives. J. Virol. Methods 43, 189–204 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krafft, A. et al. Postmortem diagnosis of morbillivirus infection in bottlenose dolphins (Tursiops truncatus) in the Atlantic and Gulf of Mexico epizootics by polymerase chain reaction-based assay. J. Wildl. Dis. 31, 410–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Tumpey, T. M. et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 79, 14933–14944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morlan, J. D. et al. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLoS One 7, e42882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Düx, A. et al. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 368, 1367–1370 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fordyce, S. L. et al. Deep sequencing of RNA from ancient maize kernels. PLoS One 8, e50961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith, O. et al. Genomic methylation patterns in archaeological barley show de-methylation as a time-dependent diagenetic process. Sci. Rep. 4, 5559 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, O. et al. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. 4, 4003 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Keller, A. et al. miRNAs in ancient tissue specimens of the Tyrolean iceman. Mol. Biol. Evol. 34, 793–801 (2017).

    CAS  PubMed  Google Scholar 

  13. Shaw, B. et al. Molecular insights into an ancient form of Paget’s disease of bone. Proc. Natl Acad. Sci. USA 116, 10463–10472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, O. et al. Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival. PLoS Biol. 17, e3000166 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fromm, B. et al. Ancient microRNA profiles of a 14,300-year-old canid samples confirm taxonomic origin and give glimpses into tissue-specific gene regulation from the Pleistocene. RNA 27, 324–334 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the researchers whose work we could not cite here owing to limited space. M.R.F. acknowledges funding from VR consolidator grant 2022-03953 “InSync”. M.T.P.G. acknowledges funding from award DNRF143.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc R. Friedländer or M. Thomas P. Gilbert.

Ethics declarations

Competing interests

M.T.P.G. is on the scientific advisory board of Colossal Biosciences. M.R.F. declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedländer, M.R., Gilbert, M.T.P. How ancient RNA survives and what we can learn from it. Nat Rev Mol Cell Biol 25, 417–418 (2024). https://doi.org/10.1038/s41580-024-00726-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-024-00726-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research