Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The danger theory of immunity revisited

Abstract

The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The danger theory of immunity in a nutshell.
Fig. 2: Immune responses elicited in sterile tissues.
Fig. 3: Clinically validated pathways leading to immune escape of cancer cells and human viruses.
Fig. 4: Danger signals modulating the antimicrobial immune response.
Fig. 5: Revisiting the danger theory of immunity.

Similar content being viewed by others

References

  1. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Burnet, F. M. The immunological significance of the thymus: an extension of the clonal selection theory of immunity. Australas. Ann. Med. 11, 79–91 (1962).

    Article  CAS  PubMed  Google Scholar 

  3. Blackman, M., Kappler, J. & Marrack, P. The role of the T cell receptor in positive and negative selection of developing T cells. Science 248, 1335–1341 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Kroemer, G. & Martinez, C. The fail–safe paradigm of immunological self-tolerance. Lancet 338, 1246–1249 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Vance, R. E. Cutting edge: cutting edge commentary: a Copernican revolution? Doubts about the danger theory. J. Immunol. 165, 1725–1728 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Medzhitov, R. & Janeway, C. A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Pradeu, T. & Cooper, E. L. The danger theory: 20 years later. Front. Immunol. 3, 287 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Land, W. G. & Messmer, K. The danger theory in view of the injury hypothesis: 20 years later. Front. Immunol. 3, 349 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Matzinger, P. & Kamala, T. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11, 221–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Carroll, S. L., Pasare, C. & Barton, G. M. Control of adaptive immunity by pattern recognition receptors. Immunity 57, 632–648 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, M., Jiang, W. & Zhou, R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 57, 752–771 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, Y., Jiang, W. & Zhou, R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat. Rev. Immunol. 24, 703–719 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, M. H. et al. How bile acids and the microbiota interact to shape host immunity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01057-x (2024).

  17. Remick, B. C., Gaidt, M. M. & Vance, R. E. Effector-triggered immunity. Annu. Rev. Immunol. 41, 453–481 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, Y. & Kroemer, G. The cancer-immune dialogue in the context of stress. Nat. Rev. Immunol. 24, 264–281 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Tuzlak, S. et al. Repositioning TH cell polarization from single cytokines to complex help. Nat. Immunol. 22, 1210–1217 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Ginhoux, F., Guilliams, M. & Merad, M. Expanding dendritic cell nomenclature in the single-cell era. Nat. Rev. Immunol. 22, 67–68 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Lazarov, T., Juarez-Carreno, S., Cox, N. & Geissmann, F. Physiology and diseases of tissue-resident macrophages. Nature 618, 698–707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kroemer, G., Chan, T. A., Eggermont, A. M. M. & Galluzzi, L. Immunosurveillance in clinical cancer management. CA Cancer J. Clin. 74, 187–202 (2024).

    Article  PubMed  Google Scholar 

  23. Rood, J. E. & Behrens, E. M. Inherited autoinflammatory syndromes. Annu. Rev. Pathol. 17, 227–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Bousfiha, A. et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42, 1508–1520 (2022).

    Article  PubMed  Google Scholar 

  25. Akalu, Y. T. & Bogunovic, D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat. Rev. Genet. 25, 184–195 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Kepp, O., Marabelle, A., Zitvogel, L. & Kroemer, G. Oncolysis without viruses — inducing systemic anticancer immune responses with local therapies. Nat. Rev. Clin. Oncol. 17, 49–64 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Patel, S. P. et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Yuan, J. & Ofengeim, D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 25, 379–395 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Medzhitov, R. & Iwasaki, A. Exploring new perspectives in immunology. Cell 187, 2079–2094 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Caron, E. et al. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Mol. Syst. Biol. 7, 533 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zitvogel, L., Perreault, C., Finn, O. J. & Kroemer, G. Beneficial autoimmunity improves cancer prognosis. Nat. Rev. Clin. Oncol. 18, 591–602 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, K., Halima, A. & Chan, T. A. Antigen presentation in cancer — mechanisms and clinical implications for immunotherapy. Nat. Rev. Clin. Oncol. 20, 604–623 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Marin, I. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 13, 410–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aging 4, 336–349 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chaib, S. et al. The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat. Cancer 5, 448–462 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Majewska, J. et al. p16-dependent increase of PD-L1 stability regulates immunosurveillance of senescent cells. Nat. Cell Biol. 26, 1336–1345 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharma, P. et al. Immune checkpoint therapy — current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Bloy, N. et al. Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol. Rev. 280, 165–174 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Galluzzi, L., Guilbaud, E., Schmidt, D., Kroemer, G. & Marincola, F. M. Targeting immunogenic cell stress and death for cancer therapy. Nat. Rev. Drug Discov. 23, 445–460 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. English, A. M., Green, K. M. & Moon, S. L. A (dis)integrated stress response: genetic diseases of eIF2α regulators. Wiley Interdiscip. Rev. RNA 13, e1689 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Humeau, J. et al. Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress. EMBO Mol. Med. 12, e11622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clement, C. C. et al. PDIA3 epitope-driven immune autoreactivity contributes to hepatic damage in type 2 diabetes. Sci. Immunol. 7, eabl3795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sen Santara, S. et al. The NK cell receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells. Nature 616, 348–356 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu, P. et al. Immunosuppression by mutated calreticulin released from malignant cells. Mol. Cell 77, 748–760.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reis, E. S. C., Yamasaki, S. & Brown, G. D. Myeloid C-type lectin receptors in innate immune recognition. Immunity 57, 700–717 (2024).

    Article  Google Scholar 

  51. Giampazolias, E. et al. Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell 184, 4016–4031.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fucikova, J., Spisek, R., Kroemer, G. & Galluzzi, L. Calreticulin and cancer. Cell Res. 31, 5–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Kepp, O., Loos, F., Liu, P. & Kroemer, G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol. Rev. 280, 83–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Thompson, E. A. & Powell, J. D. Inhibition of the adenosine pathway to potentiate cancer immunotherapy: potential for combinatorial approaches. Annu. Rev. Med. 72, 331–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Zhivaki, D. et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep. 33, 108381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhivaki, D. et al. Correction of age-associated defects in dendritic cells enables CD4+ T cells to eradicate tumors. Cell 187, 3888–3903.e18 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, J. et al. DCN released from ferroptotic cells ignites AGER-dependent immune responses. Autophagy 18, 2036–2049 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Le Naour, J. et al. A TLR3 ligand reestablishes chemotherapeutic responses in the context of FPR1 deficiency. Cancer Discov. 11, 408–423 (2021).

    Article  PubMed  Google Scholar 

  60. Wen, J. & Zhang, X. HMGB1 signaling-mediated tumor immunity in cancer progress. Front. Biosci. 28, 260 (2023).

    Article  CAS  Google Scholar 

  61. Zhao, L. et al. BCL2 inhibition reveals a dendritic cell-specific immune checkpoint that controls tumor immunosurveillance. Cancer Discov. 13, 2448–2469 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qian, W., Ye, J. & Xia, S. DNA sensing of dendritic cells in cancer immunotherapy. Front. Mol. Biosci. 11, 1391046 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, B., Han, J., Elisseeff, J. H. & Demaria, M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00727-x (2024).

  65. Yatim, N. et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jefferies, C. A. Regulating IRFs in IFN driven disease. Front. Immunol. 10, 325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schoggins, J. W. Interferon-stimulated genes: what do they all do? Annu. Rev. Virol. 6, 567–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Yang, Z. et al. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 20, 116–134 (2023).

    Article  PubMed  Google Scholar 

  70. Clucas, J. & Meier, P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat. Rev. Mol. Cell Biol. 24, 835–852 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Meier, P., Legrand, A. J., Adam, D. & Silke, J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat. Rev. Cancer 24, 299–315 (2024).

    Article  CAS  PubMed  Google Scholar 

  72. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ladoire, S. et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy 12, 864–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Gong, Y. et al. The role of necroptosis in cancer biology and therapy. Mol. Cancer 18, 100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Song, X. et al. Pharmacologic suppression of B7-H4 glycosylation restores antitumor immunity in immune-cold breast cancers. Cancer Discov. 10, 1872–1893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin, H. et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell 39, 480–493.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gulla, A. et al. Loss of GABARAP mediates resistance to immunogenic chemotherapy in multiple myeloma. Blood 143, 2612–2626 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Feng, M. et al. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat. Commun. 9, 3194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xia, C., Yin, S., To, K. K. W. & Fu, L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol. Cancer 22, 44 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, H. et al. CD73/NT5E is a potential biomarker for cancer prognosis and immunotherapy for multiple types of cancers. Adv. Biol. 7, e2200263 (2023).

    Article  Google Scholar 

  85. Lu, H. et al. Oncogenic role of HMGB1 as an alarming in robust prediction of immunotherapy response in colorectal cancer. Cancers 14, 4875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, Y., Cho, N. Y., Jin, L., Jin, H. Y. & Kang, G. H. Prognostic significance of STING expression in solid tumor: a systematic review and meta-analysis. Front. Oncol. 13, 1244962 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Holicek, P. et al. Type I interferon and cancer. Immunol. Rev. 321, 115–127 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Hangai, S. et al. Orchestration of myeloid-derived suppressor cells in the tumor microenvironment by ubiquitous cellular protein TCTP released by tumor cells. Nat. Immunol. 22, 947–957 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garg, A. D. et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci. Transl. Med. 8, 328ra327 (2016).

    Article  Google Scholar 

  91. Maueroder, C. et al. A blast without power-cell death induced by the tuberculosis-necrotizing toxin fails to elicit adequate immune responses. Cell Death Differ. 23, 1016–1025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shalhout, S. Z., Miller, D. M., Emerick, K. S. & Kaufman, H. L. Therapy with oncolytic viruses: progress and challenges. Nat. Rev. Clin. Oncol. 20, 160–177 (2023).

    Article  PubMed  Google Scholar 

  93. Gujar, S. et al. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat. Protoc. 19, 2540–2570 (2024).

    Article  PubMed  Google Scholar 

  94. Bommareddy, P. K., Zloza, A., Rabkin, S. D. & Kaufman, H. L. Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncoimmunology 8, 1591875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu, B. L. et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 10, 292–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Rehman, H., Silk, A. W., Kane, M. P. & Kaufman, H. L. Into the clinic: talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer 4, 53 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Miyamoto, S. et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 72, 2609–2621 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Koks, C. A. et al. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int. J. Cancer 136, E313–E325 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Ma, J. et al. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death Dis. 11, 48 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sakamoto, A. et al. Coxsackievirus A11 is an immunostimulatory oncolytic virus that induces complete tumor regression in a human non-small cell lung cancer. Sci. Rep. 13, 5924 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ahmed, M. et al. Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene expression is genetically correlated with the inhibition of host RNA and protein synthesis. J. Virol. 77, 4646–4657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Araki, H. et al. Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer. Mol. Ther. Oncolyt. 27, 3–13 (2022).

    Article  CAS  Google Scholar 

  103. Van Hoecke, L., Riederer, S., Saelens, X., Sutter, G. & Rojas, J. J. Recombinant viruses delivering the necroptosis mediator MLKL induce a potent antitumor immunity in mice. Oncoimmunology 9, 1802968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Thomas, S. et al. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J. Immunother. Cancer 7, 214 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nelson, A. et al. Fusogenic vesicular stomatitis virus combined with natural killer T cell immunotherapy controls metastatic breast cancer. Breast Cancer Res. 26, 78 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang, F. Y. et al. A recombinant oncolytic Newcastle virus expressing MIP-3α promotes systemic antitumor immunity. J. Immunother. Cancer 8, e000330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hinterberger, M. et al. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. J. Immunother. Cancer 9, e001586 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Passaro, C. et al. Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Clin. Cancer Res. 25, 290–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Lee, A. Correction to: nadofaragene firadenovec: first approval. Drugs 83, 951 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Boorjian, S. A. et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 22, 107–117 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Mitra, A. P. et al. Antiadenovirus antibodies predict response durability to nadofaragene firadenovec therapy in BCG-unresponsive non-muscle-invasive bladder cancer: secondary analysis of a phase 3 clinical trial. Eur. Urol. 81, 223–228 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Rojas, J. J. et al. A new MVA ancestor-derived oncolytic vaccinia virus induces immunogenic tumor cell death and robust antitumor immune responses. Mol. Ther. 32, 2406–2422 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Verbeke, R., Hogan, M. J., Lore, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Detienne, S. et al. Central role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci. Rep. 6, 39475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, G. H. & Lim, S. G. CpG-adjuvanted hepatitis B vaccine (HEPLISAV-B®) update. Expert Rev. Vaccines 20, 487–495 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Galluzzi, L., Brenner, C., Morselli, E., Touat, Z. & Kroemer, G. Viral control of mitochondrial apoptosis. PLoS Pathog. 4, e1000018 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Koehler, H. S. & Jacobs, B. L. Subversion of programed cell death by poxviruses. Curr. Top. Microbiol. Immunol. 442, 105–131 (2023).

    PubMed  PubMed Central  Google Scholar 

  120. Verburg, S. G. et al. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog. 18, e1010718 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Suraweera, C. D., Espinoza, B., Hinds, M. G. & Kvansakul, M. Mastering death: the roles of viral Bcl-2 in dsDNA viruses. Viruses 16, 879 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, Y. et al. The role of host eIF2α in viral infection. Virol. J. 17, 112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ito, T., Wuerth, J. D. & Weber, F. Protection of eIF2B from inhibitory phosphorylated eIF2: a viral strategy to maintain mRNA translation during the PKR-triggered integrated stress response. J. Biol. Chem. 299, 105287 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gibbs, V. J. et al. GCN2 in viral defence and the subversive tactics employed by viruses. J. Mol. Biol. 436, 168594 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Orvedahl, A. & Levine, B. Autophagy and viral neurovirulence. Cell Microbiol. 10, 1747–1756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chan, Y. K. & Gack, M. U. Viral evasion of intracellular DNA and RNA sensing. Nat. Rev. Microbiol. 14, 360–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chiang, H. S. & Liu, H. M. The molecular basis of viral inhibition of IRF- and STAT-dependent immune responses. Front. Immunol. 9, 3086 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Zepeda-Rivera, M. et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 628, 424–432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, M. et al. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat. Biotechnol. 42, 1263–1274 (2023).

    Article  PubMed  Google Scholar 

  130. Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ramon-Luing, L. A., Palacios, Y., Ruiz, A., Tellez-Navarrete, N. A. & Chavez-Galan, L. Virulence factors of Mycobacterium tuberculosis as modulators of cell death mechanisms. Pathogens 12, 839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. See, W. A. et al. Bacille Calmette–Guerin induces caspase-independent cell death in urothelial carcinoma cells together with release of the necrosis-associated chemokine high molecular group box protein 1. BJU Int. 103, 1714–1720 (2009).

    Article  PubMed  Google Scholar 

  133. Ashiru, O. et al. BCG therapy of bladder cancer stimulates a prolonged release of the chemoattractant CXCL10 (IP10) in patient urine. Cancers 11, 940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Augenstreich, J. et al. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell Microbiol. https://doi.org/10.1111/cmi.12726 (2017).

  135. Beckwith, K. S. et al. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat. Commun. 11, 2270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9, 533–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Grode, L. et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guerin mutants that secrete listeriolysin. J. Clin. Invest. 115, 2472–2479 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rentsch, C. A. et al. A phase 1/2 single-arm clinical trial of recombinant bacillus Calmette–Guerin (BCG) VPM1002BC immunotherapy in non-muscle-invasive bladder cancer recurrence after conventional BCG therapy: SAKK 06/14. Eur. Urol. Oncol. 5, 195–202 (2022).

    Article  PubMed  Google Scholar 

  139. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Nair-Gupta, P. et al. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506–521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Blander, J. M. & Sander, L. E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12, 215–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Moretti, J. et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171, 809–823.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Barbet, G. et al. Sensing microbial viability through bacterial RNA augments T follicular helper cell and antibody responses. Immunity 48, 584–598.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ugolini, M. et al. Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nat. Immunol. 19, 386–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Pedersen, T. K. et al. The CD4+ T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn’s disease. Immunity 55, 1909–1923.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Weckel, A. et al. Long-term tolerance to skin commensals is established neonatally through a specialized dendritic cell subgroup. Immunity 56, 1239–1254.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lopez-Otin, C. & Kroemer, G. Hallmarks of health. Cell 184, 1929–1939 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Roberti, M. P. et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat. Med. 26, 919–931 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Broquet, A. et al. Sepsis-trained macrophages promote antitumoral tissue-resident T cells. Nat. Immunol. 25, 802–819 (2024).

    Article  CAS  PubMed  Google Scholar 

  150. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zitvogel, L. & Kroemer, G. Cross-reactivity between microbial and tumor antigens. Curr. Opin. Immunol. 75, 102171 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Zitvogel, L., Fidelle, M. & Kroemer, G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 57, 2013–2029 (2024).

    Article  CAS  PubMed  Google Scholar 

  155. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Stefan, K. L., Kim, M. V., Iwasaki, A. & Kasper, D. L. Commensal microbiota modulation of natural resistance to virus infection. Cell 183, 1312–1324.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Griffin, M. E. et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 373, 1040–1046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Erttmann, S. F. et al. The gut microbiota prime systemic antiviral immunity via the cGAS–STING–IFN-I axis. Immunity 55, 847–861.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lindner, S. et al. Altered microbial bile acid metabolism exacerbates T cell-driven inflammation during graft-versus-host disease. Nat. Microbiol. 9, 614–630 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Joachim, L. et al. The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors. eBioMedicine 97, 104834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bender, M. J. et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862.e26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Klysz, D. D. et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell 42, 266–282.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Goubet, A. G. et al. Multifaceted modes of action of the anticancer probiotic Enterococcus hirae. Cell Death Differ. 28, 2276–2295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Al-Habsi, M. et al. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378, eabj3510 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Wang, H. et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34, 581–594.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Mirji, G. et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 7, eabn0704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Haak, B. W. & Wiersinga, W. J. The role of the gut microbiota in sepsis. Lancet Gastroenterol. Hepatol. 2, 135–143 (2017).

    Article  PubMed  Google Scholar 

  173. Labarta-Bajo, L. et al. Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. J. Exp. Med. 217, e20192276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yonekura, S. et al. Cancer induces a stress ileopathy depending on beta-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 12, 1128–1151 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Choi, Y. et al. Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Sci. Immunol. 8, eabo2003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vujkovic-Cvijin, I. et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl. Med. 5, 193ra191 (2013).

    Article  Google Scholar 

  177. Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    Article  CAS  PubMed  Google Scholar 

  178. Gonzales-Luna, A. J., Carlson, T. J. & Garey, K. W. Review article: safety of live biotherapeutic products used for the prevention of Clostridioides difficile infection recurrence. Clin. Infect. Dis. 77, S487–S496 (2023).

    Article  PubMed  Google Scholar 

  179. Thomas, A. M. et al. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 583–603 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Derosa, L. et al. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 187, 3373–3389.e16 (2024).

    Article  CAS  PubMed  Google Scholar 

  181. Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med. 29, 2121–2132 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Routy, B. et al. Melanoma and microbiota: current understanding and future directions. Cancer Cell 42, 16–34 (2024).

    Article  CAS  PubMed  Google Scholar 

  183. Lopez-Otin, C. & Kroemer, G. The missing hallmark of health: psychosocial adaptation. Cell Stress 8, 21–50 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Staedtke, V. et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 564, 273–277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8+ T cell differentiation and development of dysfunction in the tumor microenvironment. Immunity 53, 658–671.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360, eaan8546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Huang, D. et al. Cancer-cell-derived GABA promotes beta-catenin-mediated tumour growth and immunosuppression. Nat. Cell Biol. 24, 230–241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Montegut, L. et al. Acyl coenzyme A binding protein (ACBP): an aging- and disease-relevant ‘autophagy checkpoint’. Aging Cell 22, e13910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yang, H. et al. Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity. Nat. Med. 25, 1428–1441 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Legroux, T. M. et al. Immunomodulation by glucocorticoid-induced leucine zipper in macrophages: enhanced phagocytosis, protection from pyroptosis, and altered mitochondrial function. Front. Immunol. 15, 1396827 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hong, J. Y. et al. Long-term programming of CD8 T cell immunity by perinatal exposure to glucocorticoids. Cell 180, 847–861.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nowotny, H. F. et al. Major immunophenotypic abnormalities in patients with primary adrenal insufficiency of different etiology. Front. Immunol. 14, 1275828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wu, C. H. et al. Relative adrenal insufficiency is a risk factor and endotype of sepsis — a proof-of-concept study to support a precision medicine approach to guide glucocorticoid therapy for sepsis. Front. Immunol. 13, 1110516 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Bergthorsdottir, R. et al. Increased risk of hospitalization, intensive care and death due to COVID-19 in patients with adrenal insufficiency: a Swedish nationwide study. J. Intern. Med. 295, 322–330 (2024).

    Article  CAS  PubMed  Google Scholar 

  196. Schernthaner-Reiter, M. H. et al. Acute and life-threatening complications in Cushing syndrome: prevalence, predictors, and mortality. J. Clin. Endocrinol. Metab. 106, e2035–e2046 (2021).

    Article  PubMed  Google Scholar 

  197. Montegut, L. et al. Acyl-coenzyme a binding protein (ACBP) — a risk factor for cancer diagnosis and an inhibitor of immunosurveillance. Mol. Cancer 23, 187 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lang, Y., Fu, F., Sun, D., Xi, C. & Chen, F. Labetalol prevents intestinal dysfunction induced by traumatic brain injury. PLoS ONE 10, e0133215 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Shukla, P. K., Meena, A. S., Pierre, J. F. & Rao, R. Central role of intestinal epithelial glucocorticoid receptor in alcohol- and corticosterone-induced gut permeability and systemic response. FASEB J. 36, e22061 (2022).

    Article  CAS  PubMed  Google Scholar 

  200. Yamamoto, H., Zhang, S. & Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 24, 382–400 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ogishi, M. et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat. Med. 27, 1646–1654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yu, J. E. New primary immunodeficiencies 2023 update. Curr. Opin. Pediatr. 36, 112–123 (2024).

    Article  PubMed  Google Scholar 

  203. Grosjean, I. et al. Autophagopathies: from autophagy gene polymorphisms to precision medicine for human diseases. Autophagy 18, 2519–2536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Carbonnier, V. et al. Rs867228 in FPR1 accelerates the manifestation of luminal B breast cancer. Oncoimmunology 12, 2189823 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Wang, F., Wen, X., Wen, T. & Liu, Z. Association of TLR4 gene 2026A/G (rs1927914), 896A/G (rs4986790), and 1196C/T (rs4986791) polymorphisms and cancer susceptibility: meta-analysis and trial sequential analysis. Medicine 102, e33040 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Article  PubMed  Google Scholar 

  207. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mishra, H. et al. Disrupted degradative sorting of TLR7 is associated with human lupus. Sci. Immunol. 9, eadi9575 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Demirkaya, E., Sahin, S., Romano, M., Zhou, Q. & Aksentijevich, I. New horizons in the genetic etiology of systemic lupus erythematosus and lupus-like disease: monogenic lupus and beyond. J. Clin. Med. 9, 712 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Caielli, S., Wan, Z. & Pascual, V. Systemic lupus erythematosus pathogenesis: interferon and beyond. Annu. Rev. Immunol. 41, 533–560 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Kawai, T., Ikegawa, M., Ori, D. & Akira, S. Decoding Toll-like receptors: recent insights and perspectives in innate immunity. Immunity 57, 649–673 (2024).

    Article  CAS  PubMed  Google Scholar 

  212. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dominguez Conde, C. & Teichmann, S. A. Deciphering immunity at high plexity and resolution. Nat. Rev. Immunol. 20, 77–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Gebhardt, T., Park, S. L. & Parish, I. A. Stem-like exhausted and memory CD8+ T cells in cancer. Nat. Rev. Cancer 23, 780–798 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Abadie, K. et al. Reversible, tunable epigenetic silencing of TCF1 generates flexibility in the T cell memory decision. Immunity 57, 271–286.e13 (2024).

    Article  CAS  PubMed  Google Scholar 

  216. Jovasevic, V. et al. Formation of memory assemblies through the DNA-sensing TLR9 pathway. Nature 628, 145–153 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Gray, D. H., Gavanescu, I., Benoist, C. & Mathis, D. Danger-free autoimmune disease in Aire-deficient mice. Proc. Natl Acad. Sci. USA 104, 18193–18198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kenison, J. E., Stevens, N. A. & Quintana, F. J. Therapeutic induction of antigen-specific immune tolerance. Nat. Rev. Immunol. 24, 338–357 (2024).

    Article  CAS  PubMed  Google Scholar 

  219. Hernandez, J., Aung, S., Redmond, W. L. & Sherman, L. A. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J. Exp. Med. 194, 707–717 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Parish, I. A. & Heath, W. R. Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells. Immunol. Cell Biol. 86, 146–152 (2008).

    Article  CAS  PubMed  Google Scholar 

  221. Feldmann, M., Zanders, E. D. & Lamb, J. R. Tolerance in T-cell clones. Immunol. Today 6, 58–62 (1985).

    Article  CAS  PubMed  Google Scholar 

  222. von Boehmer, H. & Kisielow, P. Self-nonself discrimination by T cells. Science 248, 1369–1373 (1990).

    Article  Google Scholar 

  223. Janeway, C. A. Jr The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  224. Tang, D., Kang, R., Zeh, H. J. & Lotze, M. T. The multifunctional protein HMGB1: 50 years of discovery. Nat. Rev. Immunol. 23, 824–841 (2023).

    Article  CAS  PubMed  Google Scholar 

  225. Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Taylor, K. R. & Monje, M. Neuron–oligodendroglial interactions in health and malignant disease. Nat. Rev. Neurosci. 24, 733–746 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Xiao, T. et al. Tregs in visceral adipose tissue up-regulate circadian-clock expression to promote fitness and enforce a diurnal rhythm of lipolysis. Sci. Immunol. 7, eabl7641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Meizlish, M. L., Franklin, R. A., Zhou, X. & Medzhitov, R. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39, 557–581 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

O.K. receives funding from Institut National du Cancer (INCa) and Association pour la recherche sur le cancer (ARC). G.K. and L.Z. are supported by the Ligue contre le Cancer (équipe labellisée); ARC; Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; European Union Horizon 2020 research and innovation programmes Oncobiome (grant agreement number: 825410, project acronym: ONCOBIOME, project title: Gut OncoMicrobiome Signatures (GOMS) associated with cancer incidence, prognosis and prediction of treatment response), Prevalung (grant agreement number 101095604, project acronym: PREVALUNG EU, project title: Biomarkers affecting the transition from cardiovascular disease to lung cancer: towards stratified interception), INCa; LabEx Immuno-Oncology ANR-18-IDEX-0001; and the RHUs Immunolife and LUCA-pi (ANR-21-RHUS-0017 and ANR-23-RHUS-0010, both dedicated to France Relance 2030). G.K. is supported by Agence National de la Recherche (ANR-22-CE14-0066 VIVORUSH, ANR-23-CE44-0030 COPPERMAC and ANR-23-R4HC-0006 Ener-LIGHT); European Joint Programme on Rare Diseases (EJPRD) Wilsonmed; European Research Council Advanced Investigator Award (ERC-2021-ADG, grant number: 101052444, project acronym: ICD-Cancer, project title: Immunogenic cell death (ICD) in the cancer-immune dialogue); The ERA4 Health Cardinoff Grant Ener-LIGHT; European Union Horizon 2020 research and innovation programmes Neutrocure (grant agreement number: 861878, project acronym: Neutrocure, project title: Development of ‘smart’ amplifiers of reactive oxygen species specific to aberrant polymorphonuclear neutrophils for treatment of inflammatory and autoimmune diseases, cancer and myeloablation); national support managed by the Agence Nationale de la Recherche under the France 2030 programme (reference number: 21-ESRE-0028, ESR/Equipex + Onco-Pheno-Screen); Hevolution Network on Senescence in Aging (reference HF-E Einstein Network); Institut Universitaire de France; a Cancer Research ASPIRE Award from the Mark Foundation; PAIR-Obésité INCa_1873, Seerave Foundation; SIRIC Cancer Research and Personalized Medicine (CARPEM, SIRIC CARPEM INCa-DGOS-Inserm-ITMO Cancer_18006 supported by Institut National du Cancer, Ministère des Solidarités et de la Santé and INSERM). Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union, the European Research Council or any other granting authority. None of the granting authorities can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. G.K. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Guido Kroemer or Laurence Zitvogel.

Ethics declarations

Competing interests

O.K. is a scientific co-founder of Samsara Therapeutics. O.K. has been working on research projects with Air Liquide, Daiichi Sankyo, Kaleido, Lytix Pharma, PharmaMar, Samsara Therapeutics, Sanofi, Sutro, Tollys and Vascage. G.K. has been holding research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Sutro, Tollys and Vascage. G.K. is on the Board of Directors of the Bristol Myers Squibb Foundation France. G.K. is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. G.K. is in the scientific advisory boards of Hevolution, Institut Servier, Longevity Vision Funds and Rejuveron Life Sciences. G.K. is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders. G.K.’s brother, R. Kroemer, was an employee of Sanofi and now consults for Boehringer-Ingelheim. L.M. is a consultant of everImmune. L.Z. has held research contracts with GlaxoSmithKline, Incyte, Lytix, Kaleido, Innovate Pharma, Daiichi Sankyo, Pilege, Merus, Transgene, 9 m, Tusk and Roche, was on the Board of Directors of Transgene, is a cofounder of everImmune and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. The funders had no role in the design of the study; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adjuvanticity

The ability of an agent to enhance the immune response by an adjuvant effect.

Antigenicity

The capacity of a molecule (often a protein or its peptides) to be bound by immunoglobulins or T cell receptors.

Apoptosis

A cell death modality in which plasma membrane integrity is conserved until the end of process, when caspase-3-dependent blebbing of the cells facilitates their final disintegration.

Beclin 1 complex

A polyprotein complex involved in the initiation of autophagy through the activation of a phosphatidylinositol 3-kinase.

Bile acids

Steroids that are produced by hepatocytes as primary bile acids to be secreted via bile into the duodenum. In the colon, bacteria metabolize primary bile acids so secondary bile acids that can be taken up and reach the liver to be modified to tertiary bile acids.

Calreticulin

(CALR). The most abundant luminal endoplasmic reticulum protein that can translocate to the cell surface in the context of immunogenic cell death.

Chemoembolization

Intra-arterial injection of chemotherapeutic substances together with particles that interrupt capillary blood flow.

Danger signals

The compendium of signals produced by damaged tissues that shapes the local inflammatory and immune responses.

Dysbiosis

An imbalance in the microbial composition that shifts from a normal, diverse gut flora to a dysfunctional array of microorganisms that compromises organismal health.

Enteropathies

Pathologies affecting the gut that can be diagnosed by histopathological examination revealing alterations of the mucosa and submucosal structures.

F-actin

Polymers of actin protein that form filamentous actin within microfilaments of the cytoskeleton.

Ferroptosis

Caspase-independent death caused by excessive peroxidation of cellular membranes.

Gut permeability

Failure to control the translocation of molecules and supramolecular entities (outer membrane vesicle and entire microorganisms) from inside the gastrointestinal tract through the cells lining the gut wall into the rest of the body.

Immune evasion

During tumour progression, cancer cells must escape from, or suppress, immunosurveillance to strive in an unrestrained fashion.

Immunogenic cell death

(ICD). A form of cell death that leads to the recognition of dead-cell antigens by T lymphocytes.

Immunogenicity

The capacity of an entity to induce an immune response based on the combination of antigenicity and adjuvanticity.

Integrated stress response

(ISR). A phylogenetically ancient stress response in which specific kinases phosphorylate eIF2α, causing a change from 5′ cap-dependent to 5′ cap-independent translation of mRNAs, hence shifting the range of mRNA species that are translated into proteins. ISR is required for calreticulin exposure as well as for autophagy enhancement.

Interferon-stimulated genes

(ISGs). A series of genes expressed after the action of type I interferons on their common receptors. Such genes encode antiviral and bactericidal proteins, pattern-recognition receptors, and chemokines and their receptors, as well as other immunostimulatory proteins.

Listeriolysin

A pore-forming toxin produced by Listeria monocytogenes.

Microbiota

The ecosystem formed by archae, bacteria, fungi, phages, protists, viruses and other microorganisms that colonizes the body.

Necroptosis

Caspase-independent death involving characteristic effector molecules such as RIPK3 and MLKL.

Neoadjuvant

Neoadjuvant therapies are administered before surgical removal of the tumour, whereas adjuvant therapies are administered after surgery.

Oncolytic viruses

Viruses that have been designed for the destruction of cancer cells.

Penumbra

Partially surviving tissue at the margin of the necrotic area.

Photodynamic therapy

A phototherapy involving intense light and a photosensitizing chemical agent.

Polarity

Initial classification led to the distinction of immunocytes in two classes (such as T helper cells: TH1 and TH2; and macrophages: M1 and M2). This dichotomy turned out to be an oversimplification owing to the existence of more than two classes and overlaps (multifunctionality).

Premortem stress

Activation of cellular stress pathways before cell death, defined by the irreversible permeabilization of the plasma membrane, occurs.

Pyroptosis

A type of cell death involving the activation of caspase-1 activation complexes that facilitates the maturation of IL-1β and the proteolytic activation of gasdermin D that then forms pores in the plasma membrane to release IL-1β.

Senescence

A state of close-to-irreversible cell cycle arrest linked to reduction of cellular functions, morphological changes and transcriptional reprogramming.

Senescence-associated secretory phenotype

Senescence is coupled to the secretion of a heterogeneous panel of cytokines, which may include IL6 and IL8, as well as transforming growth factor-β, but depends on the cell type and the upstream triggers.

Sepsis

The spread of infectious pathogens and their products to the bloodstream acutely causing a life-threatening systemic inflammatory response.

Serial passage

A method of growing bacteria or virus in iterations, usually in cell cultures, allowing the accumulation of mutations that are compatible with replication but not necessary for pathogenicity, hence leading to the attenuation of virulence.

Sickness behaviour

A coordinated set of adaptive behavioural changes that develops in the context of infectious disease.

Type I interferons

(IFN-Is). α-interferon and β-interferon that share the property to act on a common receptor, IFNAR.

Vita-PAMPs

Pathogen-associated molecular patterns that signify microbial viability.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroemer, G., Montégut, L., Kepp, O. et al. The danger theory of immunity revisited. Nat Rev Immunol 24, 912–928 (2024). https://doi.org/10.1038/s41577-024-01102-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-024-01102-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing