Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The renaissance of oral tolerance: merging tradition and new insights

Abstract

Oral tolerance is the process by which feeding of soluble proteins induces antigen-specific systemic immune unresponsiveness. Oral tolerance is thought to have a central role in suppressing immune responses to ‘harmless’ food antigens, and its failure can lead to development of pathologies such as food allergies or coeliac disease. However, on the basis of long-standing experimental observations, the relevance of oral tolerance in human health has achieved new prominence recently following the discovery that oral administration of peanut proteins prevents the development of peanut allergy in at-risk human infants. In this Review, we summarize the new mechanistic insights into three key processes necessary for the induction of tolerance to oral antigens: antigen uptake and transport across the small intestinal epithelial barrier to the underlying immune cells; the processing, transport and presentation of fed antigen by different populations of antigen-presenting cells; and the development of immunosuppressive T cell populations that mediate antigen-specific tolerance. In addition, we consider how related but distinct processes maintain tolerance to bacterial antigens in the large intestine. Finally, we outline the molecular mechanisms and functional consequences of failure of oral tolerance and how these may be modulated to enhance clinical outcomes and prevent disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routes of antigen uptake in the intestine.
Fig. 2: Locally conditioned dendritic cells underpin the generation of regulatory T cells and induction of oral tolerance.
Fig. 3: Weaning and the induction of oral tolerance.

Similar content being viewed by others

References

  1. Pabst, O. & Mowat, A. M. Oral tolerance to food protein. Mucosal Immunol. 5, 232–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rezende, R. M. & Weiner, H. L. Oral tolerance: an updated review. Immunol. Lett. 245, 29–37 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Mowat, A. M. Basic mechanisms and clinical implications of oral tolerance. Curr. Opin. Gastroenterol. 15, 546–556 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Faria, A. M. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Faria, A. M. & Weiner, H. L. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol. 73, 153–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Roberts, G. et al. Defining the window of opportunity and target populations to prevent peanut allergy. J. Allergy Clin. Immunol. 151, 1329–1336 (2022).

    Article  PubMed  Google Scholar 

  7. Torow, N. et al. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer’s patch. Immunity 56, 1220–1238.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vaarala, O., Saukkonen, T., Savilahti, E., Klemola, T. & Akerblom, H. K. Development of immune response to cow’s milk proteins in infants receiving cow’s milk or hydrolyzed formula. J. Allergy Clin. Immunol. 96, 917–923 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Chambers, S. J. et al. Adoptive transfer of dendritic cells from allergic mice induces specific immunoglobulin E antibody in naïve recipients in absence of antigen challenge without altering the T helper 1/T helper 2 balance. Immunology 112, 72–79 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen, L., Weber, C. R. & Turner, J. R. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J. Cell Biol. 181, 683–695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shashikanth, N. et al. Tight junction channel regulation by interclaudin interference. Nat. Commun. 13, 3780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, X. P., Almqvist, N. & Telemo, E. Human small intestinal epithelial cells constitutively express the key elements for antigen processing and the production of exosomes. Blood Cell Mol. Dis. 35, 122–128 (2005).

    Article  CAS  Google Scholar 

  13. Karlsson, M. et al. “Tolerosomes” are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Ostman, S., Taube, M. & Telemo, E. Tolerosome-induced oral tolerance is MHC dependent. Immunology 116, 464–476 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Van Niel, G. et al. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52, 1690–1697 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Gustafsson, J. K. et al. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. eLife 10, e67292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kulkarni, D. H. et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol. 13, 271–282 (2020). This review covers the initial studies that indicate goblet cell-associated passages may have an important role in the uptake of antigen from the intestine and in oral tolerance.

    Article  CAS  PubMed  Google Scholar 

  19. Knoop, K. A. et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Knoop, K. A. et al. Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a model of late-onset neonatal sepsis. Proc. Natl Acad. Sci. USA 117, 7941–7949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kulkarni, D. H. et al. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol. 11, 1103–1113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noah, T. K. et al. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. J. Allergy Clin. Immunol. 144, 1058–1073.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki, H. et al. Ovalbumin-protein sigma 1 M-cell targeting facilitates oral tolerance with reduction of antigen-specific CD4+ T cells. Gastroenterology 135, 917–925 (2008).

    Article  PubMed  Google Scholar 

  24. Jang, M. H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA 101, 6110–6115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40, 248–261 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Q. et al. Pyruvate enhances oral tolerance via GPR31. Int. Immunol. 34, 343–352 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Cummings, R. J. et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joeris, T. et al. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3+CD8+ Tregs. Sci. Immunol. 6, eabd3774 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Cerovic, V. et al. Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol. 8, 38–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007). Together with Sun et al. (2007), this study demonstrates that small intestine lamina propria (SILP) DCs and their migratory counterparts in the MLN induce Treg differentiation by the production of retinoic acid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat. Immunol. 17, 545–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fukaya, T. et al. Gut dysbiosis promotes the breakdown of oral tolerance mediated through dysfunction of mucosal dendritic cells. Cell Rep. 42, 112431 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Worbs, T. et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203, 519–527 (2006). This study demonstrates the dependence of oral tolerance induction on the active carriage of antigen from the SILP to the MLN by cDCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baratin, M. et al. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42, 627–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Worthington, J. J., Czajkowska, B. I., Melton, A. C. & Travis, M. A. Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8. Gastroenterology 141, 1802–1812 (2011). This paper shows that activation of TGFβ vis integrin αvβ8 on dendritic cells leads to generation of regulatory T cells.

    Article  CAS  PubMed  Google Scholar 

  41. Hung, L. Y. et al. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci. Immunol. 5, eabc6259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matteoli, G. et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59, 595–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Moreira, T. G. et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat. Commun. 12, 4907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022). This study, together with Lyu et al. (2022) and Kedmi et al. (2022) presents evidence that a novel population of RORγt+ antigen-presenting cells is specialized in the induction of regulatory T cells and tolerance to the microbiota in the neonatal intestine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mucida, D. et al. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest. 115, 1923–1933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohta, T. et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci. Rep. 6, 23505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gribonika, I. et al. Migratory CD103+CD11b+ cDC2s in Peyer’s patches are critical for gut IgA responses following oral immunization. Mucosal Immunol. https://doi.org/10.1016/j.mucimm.2024.03.004 (2024).

  50. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bosteels, V. et al. LXR signaling controls homeostatic dendritic cell maturation. Sci. Immunol. 8, eadd3955 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Welty, N. E. et al. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210, 2011–2024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scott, C. L. et al. CCR2+CD103 intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 8, 327–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Cerovic, V. et al. Intestinal CD103 dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 6, 104–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Canesso, M. C. C. et al. Identification of dendritic cell-T cell interactions driving immune responses to food. Preprint at bioRxiv https://doi.org/10.1101/2022.10.26.513772 (2022).

  56. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tanaka, Y. et al. Oral CD103CD11b+ classical dendritic cells present sublingual antigen and induce Foxp3+ regulatory T cells in draining lymph nodes. Mucosal Immunol. 10, 79–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Fenton, T. M. et al. Inflammatory cues enhance TGFβ activation by distinct subsets of human intestinal dendritic cells via integrin αvβ8. Mucosal Immunol. 10, 624–634 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jaensson-Gyllenbäck, E. et al. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol. 4, 438–447 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. McDonald, K. G. et al. Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids. Am. J. Pathol. 180, 984–997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boucard-Jourdin, M. et al. β8 integrin expression and activation of TGF-β by intestinal dendritic cells are determined by both tissue microenvironment and cell lineage. J. Immunol. 197, 1968–1978 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Zeng, R., Bscheider, M., Lahl, K., Lee, M. & Butcher, E. C. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunol. 9, 183–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Bain, C. C. et al. TGFβR signalling controls CD103+CD11b+ dendritic cell development in the intestine. Nat. Commun. 8, 620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bang, Y. J. et al. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science 373, eabf9232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rivera, C. A. et al. Epithelial colonization by gut dendritic cells promotes their functional diversification. Immunity 55, 129–144.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Shan, M. et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447–453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chng, S. H. et al. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity. Sci. Rep. 6, 23820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Delgado, M., Gonzalez-Rey, E. & Ganea, D. The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J. Immunol. 175, 7311–7324 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Cording, S. et al. The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunol. 7, 359–368 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8, 1086–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Denning, T. L. et al. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187, 733–747 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guillaume, J., Leufgen, A., Hager, F. T., Pabst, O. & Cerovic, V. MHCII expression on gut macrophages supports T cell homeostasis and is regulated by microbiota and ontogeny. Sci. Rep. 13, 1509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, L. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568, 405–409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reynders, A. et al. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt lymphoid cells. EMBO J. 30, 2934–2947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011). In this paper, cross-talk with IL-10producing mucosal macrophages is shown to be needed for the local expansion of the regulatory T cells involved in oral tolerance to dietary antigen.

    Article  CAS  PubMed  Google Scholar 

  80. Kim, M. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151–163.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kelly, A. et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J. Exp. Med. 215, 2725–2736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heuberger, C., Pott, J. & Maloy, K. J. Why do intestinal epithelial cells express MHC class II. Immunology 162, 357–367 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Zindl, C. L. et al. Distal colonocytes targeted by C. rodentium recruit T-cell help for barrier defence. Nature 629, 669–678 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He, K. et al. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell 186, 3033–3048.e20 (2023).

    Article  PubMed  Google Scholar 

  85. Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. & Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14, 271–280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sujino, T. et al. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352, 1581–1586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bousbaine, D. et al. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science 377, 660–666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramanan, D. et al. Regulatory T cells in the face of the intestinal microbiota. Nat. Rev. Immunol. 23, 749–762 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Malik, A. et al. Epithelial IFNγ signalling and compartmentalized antigen presentation orchestrate gut immunity. Nature 623, 1044–1052 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garside, P. & Mowat, A. M. Oral tolerance. Semin. Immunol. 13, 177–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742, s1 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Hauet-Broere, F. et al. Functional CD25− and CD25+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur. J. Immunol. 33, 2801–2810 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Kaminski, A. et al. Resident regulatory T cells reflect the immune history of individual lymph nodes. Sci. Immunol. 8, eadj5789 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Archila, L. D. et al. α(S1)-Casein elucidate major T-cell responses in cow’s milk allergy. J. Allergy Clin. Immunol. 140, 854–857.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Archila, L. D. et al. Jug r 2-reactive CD4+ T cells have a dominant immune role in walnut allergy. J. Allergy Clin. Immunol. 136, 983–992.e7 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Christophersen, A. et al. Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions. Nat. Med. 25, 734–737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bacher, P. et al. Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol. 190, 3967–3976 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Rodríguez-Sillke, Y. et al. Analysis of circulating food antigen-specific T-cells in celiac disease and inflammatory bowel disease. Int. J. Mol. Sci. 24, 8153 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sarna, V. K. et al. HLA-DQ-gluten tetramer blood test accurately identifies patients with and without celiac disease in absence of gluten consumption. Gastroenterology 154, 886–896.e6 (2018).

    Article  PubMed  Google Scholar 

  101. Martini, G. R. et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic T(H)1 cell responses in Crohn’s disease. Nat. Med. 29, 2602–2614 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Christophersen, A. et al. Phenotype-based isolation of antigen-specific CD4+ T cells in autoimmunity: a study of celiac disease. Adv. Sci. 9, e2104766 (2022).

    Article  Google Scholar 

  103. Hong, S. W. et al. Immune tolerance of food is mediated by layers of CD4+ T cell dysfunction. Nature 607, 762–768 (2022). This elegant study characterizes a population of CD4+ T cells induced by oral antigen that lack traditional lineage markers but may represent a source of Treg cells on secondary antigen encounter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van der Veeken, J. et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity 55, 1173–1184.e7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Abdel-Gadir, A. et al. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat. Med. 25, 1164–1174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Luciani, C., Hager, F. T., Cerovic, V. & Lelouard, H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol. 15, 40–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Houston, S. A. et al. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 9, 468–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Esterhazy, D. et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569, 126–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Toivonen, R. et al. Activation of plasmacytoid dendritic cells in colon-draining lymph nodes during Citrobacter rodentium infection involves pathogen-sensing and inflammatory pathways distinct from conventional dendritic cells. J. Immunol. 196, 4750–4759 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Veenbergen, S. et al. Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103+ dendritic cells. Mucosal Immunol. 9, 894–906 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Knoop, K. A. et al. Synchronization of mothers and offspring promotes tolerance and limits allergy. JCI Insight 5, e137943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Panea, C. et al. Intestinal monocyte-derived macrophages control commensal-specific Th17 responses. Cell Rep. 12, 1314–1324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40, 594–607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hepworth, M. R. et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brown, C. C. et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179, 846–863.e24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, J. et al. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci. Immunol. 6, eabl5053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Abramson, J., Dobeš, J., Lyu, M. & Sonnenberg, G. F. The emerging family of RORγt+ antigen-presenting cells. Nat. Rev. Immunol. 24, 64–77 (2024).

    Article  CAS  PubMed  Google Scholar 

  126. Dobeš, J. et al. Extrathymic expression of Aire controls the induction of effective TH17 cell-mediated immune response to Candida albicans. Nat. Immunol. 23, 1098–1108 (2022).

    Article  PubMed  Google Scholar 

  127. Yamano, T. et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J. Exp. Med. 216, 1027–1037 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parisotto, Y. F. et al. Thetis cells induce food-specific Treg cell differentiation and oral tolerance. Preprint at bioRxiv https://doi.org/10.1101/2024.05.08.592952 (2024).

  129. Karlsson, M. R., Rugtveit, J. & Brandtzaeg, P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow’s milk allergy. J. Exp. Med. 199, 1679–1688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Du Toit, G. et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 372, 803–813 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Perkin, M. R. et al. Efficacy of the Enquiring About Tolerance (EAT) study among infants at high risk of developing food allergy. J. Allergy Clin. Immunol. 144, 1606–1614.e2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Du Toit, G. et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J. Allergy Clin. Immunol. 122, 984–991 (2008). This clinical study shows that introduction of antigen into the diet early in life reduces susceptibility to peanut allergy in children.

    Article  PubMed  Google Scholar 

  133. Smeekens, J. M. et al. A single priming event prevents oral tolerance to peanut. Clin. Exp. Allergy 53, 930–940 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Brough, H. A. et al. Epicutaneous sensitization in the development of food allergy: what is the evidence and how can this be prevented? Allergy 75, 2185–2205 (2020).

    Article  PubMed  Google Scholar 

  135. Strid, J., Thomson, M., Hourihane, J., Kimber, I. & Strobel, S. A novel model of sensitization and oral tolerance to peanut protein. Immunology 113, 293–303 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. DePaolo, R. W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abadie, V., Khosla, C. & Jabri, B. A mouse model of celiac disease. Curr. Protoc. 2, e515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bouziat, R. et al. Murine norovirus infection induces TH1 inflammatory responses to dietary antigens. Cell Host Microbe 24, 677–688.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Medina Sanchez, L. et al. The gut protist Tritrichomonas arnold restrains virus-mediated loss of oral tolerance by modulating dietary antigen-presenting dendritic cells. Immunity 56, 1862–1875.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Lindfors, K. et al. Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study. Gut 69, 1416–1422 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Brown, J. J., Jabri, B. & Dermody, T. S. A viral trigger for celiac disease. PLoS Pathog. 14, e1007181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Iversen, R. & Sollid, L. M. The immunobiology and pathogenesis of celiac disease. Annu. Rev. Pathol. 18, 47–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Araya, R. E. et al. Mechanisms of innate immune activation by gluten peptide p31-43 in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G40–G49 (2016).

    Article  PubMed  Google Scholar 

  145. Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288.e5 (2019). This study demonstrates that a pro-inflammatory reaction to the microbiota at the time of weaning prevents systemic inflammatory and allergic disorders later in life.

    Article  CAS  PubMed  Google Scholar 

  146. Hornef, M. W. & Torow, N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ — timed succession of non-redundant phases to establish mucosal host-microbial homeostasis after birth. Immunology 159, 15–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Donald, K. & Finlay, B. B. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat. Rev. Immunol. 23, 735–748 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Filardy, A. A., Ferreira, J. R. M., Rezende, R. M., Kelsall, B. L. & Oliveira, R. P. The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunol. Lett. 253, 41–53 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sanidad, K. Z. et al. Gut bacteria-derived serotonin promotes immune tolerance in early life. Sci. Immunol. 9, eadj4775 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Willems, F., Vollstedt, S. & Suter, M. Phenotype and function of neonatal DC. Eur. J. Immunol. 39, 26–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Ruckwardt, T. J., Malloy, A. M., Morabito, K. M. & Graham, B. S. Quantitative and qualitative deficits in neonatal lung-migratory dendritic cells impact the generation of the CD8+ T cell response. PLoS Pathog. 10, e1003934 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ruckwardt, T. J., Morabito, K. M., Bar-Haim, E., Nair, D. & Graham, B. S. Neonatal mice possess two phenotypically and functionally distinct lung-migratory CD103+ dendritic cell populations following respiratory infection. Mucosal Immunol. 11, 186–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Duong, Q. A., Pittet, L. F., Curtis, N. & Zimmermann, P. Antibiotic exposure and adverse long-term health outcomes in children: a systematic review and meta-analysis. J. Infect. 85, 213–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Størdal, K., White, R. A. & Eggesbø, M. Early feeding and risk of celiac disease in a prospective birth cohort. Pediatrics 132, e1202–e1209 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gu, Y. et al. Immune microniches shape intestinal Treg function. Nature 628, 854–862 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Husby, S., Mestecky, J., Moldoveanu, Z., Holland, S. & Elson, C. O. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J. Immunol. 152, 4663–4670 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. Leishman, A. J., Garside, P. & Mowat, A. M. Induction of oral tolerance in the primed immune system: influence of antigen persistence and adjuvant form. Cell. Immunol. 202, 71–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Pabst, O. et al. Gut-liver axis: barriers and functional circuits. Nat. Rev. Gastroenterol. Hepatol. 20, 447–461 (2023).

    Article  PubMed  Google Scholar 

  160. Callery, M. P., Kamei, T. & Flye, M. W. The effect of portacaval shunt on delayed-hypersensitivity responses following antigen feeding. J. Surg. Res. 46, 391–394 (1989).

    Article  CAS  PubMed  Google Scholar 

  161. Thomson, A. W. & Knolle, P. A. Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 10, 753–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bamboat, Z. M. et al. Human liver dendritic cells promote T cell hyporesponsiveness. J. Immunol. 182, 1901–1911 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Carambia, A. et al. TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J. Hepatol. 61, 594–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Limmer, A. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. Immunol. 35, 2970–2981 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Callery, M. P., Kamei, T. & Flye, M. W. Kupffer cell blockade inhibits induction of tolerance by the portal venous route. Transplantation 47, 1092–1094 (1989).

    Article  CAS  PubMed  Google Scholar 

  167. Heymann, F. et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62, 279–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Goubier, A. et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29, 464–475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cassani, B. et al. Gut-tropic T cells that express integrin α4β7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141, 2109–2118 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the German research foundation (DFG) Project-ID 403224013 – SFB 1382 (B06 to O.P).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Vuk Cerovic or Allan McI Mowat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Petra Bachar, Katsuaki Sato and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anergy

When T cells encounter their cognate antigen in the absence of costimulation, they can become anergic. In this state, there is some evidence of activation, but there are no effector functions and the cell cannot proliferate or show other functions when restimulated with antigen. Anergic T cells also do not show active regulatory activity.

Antigen-free diet

A diet which lacks proteins or immunogenic peptides, with amino acids usually being the only source of nitrogen.

Delayed-type hypersensitivity

(DTH). Also known as type IV hypersensitivity, DTH is a form of immune reaction driven classically by CD4+ TH1 cells producing IFNγ, leading to activation of macrophages. The resulting production of nonspecific mediators such as TNF, IL-6, IL-1 and reactive oxygen intermediates is aimed at clearing pathogens, but it can also be an important cause of tissue damage.

Exosomes

Small vesicles with bilipid membranes derived from the cell surface or intracellular organelles such as endosomes, lysosomes or endoplasmic reticulum that are released into the surrounding environment. As well as membrane-bound molecules, they can contain other cellular material such as RNA, DNA and proteins which can transmit information to neighbouring cells.

Gasdermin D

First described as the effector molecule released when a cell undergoes the inflammatory programmed cell death process of pyroptosis. In this situation, caspases activated downstream of the inflammasome result in cleavage of full-length gasdermin D, releasing an N-terminal form that forms pores in the cell membrane. The cell then dies owing to membrane leakage and pro-inflammatory mediators such as IL-1β are released through the pores. More recently, non-pore-forming roles of gasdermin D have been described and these include the caspase-dependent generation of a smaller fragment that can translocate to the nucleus and modify gene transcription.

Oral tolerance

Antigen-specific immunological hypo-responsiveness induced by feeding an antigen. It can affect both local immune function in the intestine and throughout the rest of the body.

Peripherally induced Treg (pTreg) cells

Similarly to thymic regulatory T cells (tTreg cells, also referred to as natural Treg cells), pTreg cells express FOXP3 and depend on this transcription factor for their development and functions. However, in contrast to tTreg cells, pTreg cells differentiate from conventional naive CD4+ T cells in secondary lymphoid organs under the influence of TGFβ and retinoic acid or when antigen is presented under conditions of metabolic stress. pTreg cells can express RORγt, but not Helios, and are usually specific for non-self-antigens. They are important in tolerance to foods, the microbiota and the fetus. By contrast, thymic Treg cells arise in the thymus, are self-reactive and express the Helios transcription factor. Both types of Treg cell control inflammatory effector immune responses in a number of ways, including through the production of inhibitory cytokines and the CTLA4-mediated removal of costimulatory molecules from the surface of antigen-presenting cells.

Type 1 Treg cells

A population of CD4+ T cells with regulatory function that do not express FOXP3, and the development of which is dependent on IL-10. They act by producing IL-10 and can also express IFNγ.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerovic, V., Pabst, O. & Mowat, A.M. The renaissance of oral tolerance: merging tradition and new insights. Nat Rev Immunol 25, 42–56 (2025). https://doi.org/10.1038/s41577-024-01077-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-024-01077-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing