Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammasome components as new therapeutic targets in inflammatory disease

A Publisher Correction to this article was published on 05 December 2024

An Author Correction to this article was published on 05 December 2024

This article has been updated

Abstract

Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The human canonical inflammasomes activate caspase 1.
Fig. 2: Human inflammasomes activate distinct caspases to cleave and activate GSDMD, IL-1β and IL-18.
Fig. 3: Strategies for targeting the inflammasome pathway.

Similar content being viewed by others

Change history

References

  1. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. So, A. et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 62, 3064–3076 (2010). This study reports the first successful use of an inflammasome pathway inhibitor in human disease, showing that the anti-IL-1 biologic anakinra resolves acute gout flares.

    Article  CAS  PubMed  Google Scholar 

  3. Kullenberg, T., Lofqvist, M., Leinonen, M., Goldbach-Mansky, R. & Olivecrona, H. Long-term safety profile of anakinra in patients with severe cryopyrin-associated periodic syndromes. Rheumatology 55, 1499–1506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Landmann, E. C. & Walker, U. A. Pharmacological treatment options for cryopyrin-associated periodic syndromes. Expert. Rev. Clin. Pharmacol. 10, 855–864 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Ridker, P. M., MacFadyen, J. G., Thuren, T. & Libby, P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur. Heart J. 41, 2153–2163 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Brydges, S. D. et al. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J. Clin. Invest. 123, 4695–4705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng, F. et al. Applications of nanobodies in brain diseases. Front. Immunol. 13, 978513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Makurvet, F. D. Biologics vs. small molecules: drug costs and patient access. Med. Drug. Discov. 9, 100075 (2021).

    Article  CAS  Google Scholar 

  10. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015). This study is the first to identify a potent and specific NLRP3 inhibitor, showing its capacity to suppress disease outputs in mouse preclinical models and in human patient samples ex vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coll, R. C., Schroder, K. & Pelegrin, P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol. Sci. 43, 653–668 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Corcoran, S. E., Halai, R. & Cooper, M. A. Pharmacological inhibition of the nod-like receptor family pyrin domain containing 3 inflammasome with MCC950. Pharmacol. Rev. 73, 968–1000 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnett, K. C., Li, S., Liang, K. & Ting, J. P. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186, 2288–2312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, N. et al. Recent progress and prospects of small molecules for NLRP3 inflammasome inhibition. J. Med. Chem. 66, 14447–14473 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Duan, M. et al. Medicinal chemistry strategies targeting NLRP3 inflammasome pathway: a recent update from 2019 to mid-2023. Eur. J. Med. Chem. 260, 115750 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Masters, S. L., Simon, A., Aksentijevich, I. & Kastner, D. L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vande Walle, L. & Lamkanfi, M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat. Rev. Drug. Discov. 23, 43–66 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Milner, M. T., Maddugoda, M., Gotz, J., Burgener, S. S. & Schroder, K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr. Opin. Immunol. 68, 116–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Guarda, G. et al. Differential expression of NLRP3 among hematopoietic cells. J. Immunol. 186, 2529–2534 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Coll, R. C. et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol. 15, 556–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, H. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 9, 2550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmacke, N. A. et al. IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network. Immunity 55, 2271–2284.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaufmann, B. et al. Antisense oligonucleotide therapy decreases IL-1β expression and prolongs survival in mutant Nlrp3 mice. J. Immunol. 211, 287–294 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Angosto-Bazarra, D., Molina-Lopez, C. & Pelegrin, P. Physiological and pathophysiological functions of NLRP6: pro- and anti-inflammatory roles. Commun. Biol 5, 524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, P. et al. Nlrp6 regulates intestinal antiviral innate immunity. Science 350, 826–830 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xing, J. et al. DHX15 is required to control RNA virus-induced intestinal inflammation. Cell Rep. 35, 109205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen, C. et al. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759–5774.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, A. H. & Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217, e20190314 (2020).

    Article  PubMed  Google Scholar 

  32. Bierschenk, D., Boucher, D. & Schroder, K. Salmonella-induced inflammasome activation in humans. Mol. Immunol. 86, 38–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Romberg, N., Vogel, T. P. & Canna, S. W. NLRC4 inflammasomopathies. Curr. Opin. Allergy Clin. Immunol. 17, 398–404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sebastian-Valverde, M. et al. Discovery and characterization of small-molecule inhibitors of NLRP3 and NLRC4 inflammasomes. J. Biol. Chem. 296, 100597 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chui, A. J. et al. N-terminal degradation activates the NLRP1B inflammasome. Science 364, 82–85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandstrom, A. et al. Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364, eaau1330 (2019). Together with Chui et al. (2019), these back-to-back studies solve the enigmatic and unusual mechanism of NLRP1 inflammasome activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharif, H. et al. Dipeptidyl peptidase 9 sets a threshold for CARD8 inflammasome formation by sequestering its active C-terminal fragment. Immunity 54, 1392–1404.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Planes, R. et al. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Mol. Cell 82, 2385–2400.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barnett, K. C. et al. An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 31, 243–259.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Bauernfried, S., Scherr, M. J., Pichlmair, A., Duderstadt, K. E. & Hornung, V. Human NLRP1 is a sensor for double-stranded RNA. Science 371, eabd0811 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Robinson, K. S. et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 370, eaay2002 (2020). This paper reports the discovery that NLRP1 is a viral sensor, and is the first of several reports showing that NLRP1 has a ‘tripwire’ region that functions as bait for diverse viral proteases.

    Article  CAS  PubMed  Google Scholar 

  42. Tsu, B. V. et al. Diverse viral proteases activate the NLRP1 inflammasome. eLife 10, e60609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leal, V. N. C., Genov, I. R., Mallozi, M. C., Sole, D. & Pontillo, A. Polymorphisms in inflammasome genes and risk of asthma in Brazilian children. Mol. Immunol. 93, 64–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Drutman, S. B. et al. Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc. Natl Acad. Sci. USA 116, 19055–19063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong, C. C. et al. Inhibition of IL1β by canakinumab may be effective against diverse molecular subtypes of lung cancer: an exploratory analysis of the CANTOS trial. Cancer Res. 80, 5597–5605 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Paz-Ares, L. et al. Canakinumab in combination with docetaxel compared with docetaxel alone for the treatment of advanced non-small cell lung cancer following platinum-based doublet chemotherapy and immunotherapy (CANOPY-2): a multicenter, randomized, double-blind, phase 3 trial. Lung Cancer 189, 107451 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Garon, E. B. et al. Canakinumab as adjuvant therapy in patients with completely resected non-small-cell lung cancer: results from the CANOPY-A double-blind, randomized clinical trial. J. Clin. Oncol. 42, 180–191 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Tan, D. S. W. et al. Canakinumab versus placebo in combination with first-line pembrolizumab plus chemotherapy for advanced non-small-cell lung cancer: results from the CANOPY-1 trial. J. Clin. Oncol. 42, 192–204 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Fenini, G., Karakaya, T., Hennig, P., Di Filippo, M. & Beer, H. D. The NLRP1 inflammasome in human skin and beyond. Int. J. Mol. Sci. 21, 4788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burian, M., Schmidt, M. F. & Yazdi, A. S. The NLRP1 inflammasome in skin diseases. Front. Immunol. 14, 1111611 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhong, F. L. et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167, 187–202.e17 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Docherty, C. A. et al. A novel dual NLRP1 and NLRP3 inflammasome inhibitor for the treatment of inflammatory diseases. Clin. Transl. Immunol. 12, e1455 (2023).

    Article  CAS  Google Scholar 

  53. Ball, D. P. et al. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 3, e202000664 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Masters, S. L. et al. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 37, 1009–1023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okondo, M. C. et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 13, 46–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, D. C. et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 24, 1151–1156 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, Q. et al. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science 371, eabe1707 (2021). This study shows that CARD8 is a viral sensor activated by viral proteases such as the HIV protease, providing a molecular mechanism for HIV-induced T cell depletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kulsuptrakul, J., Turcotte, E. A., Emerman, M. & Mitchell, P. S. A human-specific motif facilitates CARD8 inflammasome activation after HIV-1 infection. eLife 12, e84108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moore, K. P. et al. A phenotypic screen identifies potent DPP9 inhibitors capable of killing HIV-1 infected cells. ACS Chem. Biol. 17, 2595–2604 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Clark, K. M. et al. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nat. Chem. Biol. 19, 431–439 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Tsu, B. V. et al. Host-specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome. PLoS Biol. 21, e3002144 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  PubMed  Google Scholar 

  65. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jin, T. et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36, 561–571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, B., Tian, Y. & Yin, Q. AIM2 inflammasome assembly and signaling. Adv. Exp. Med. Biol. 1172, 143–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Lugrin, J. & Martinon, F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol. Rev. 281, 99–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Kumari, P., Russo, A. J., Shivcharan, S. & Rathinam, V. A. AIM2 in health and disease: Inflammasome and beyond. Immunol. Rev. 297, 83–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dang, E. V., McDonald, J. G., Russell, D. W. & Cyster, J. G. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 171, 1057–1071.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Micco, A. et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc. Natl Acad. Sci. USA 113, E4671–E4680 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paulin, N. et al. Double-strand DNA sensing Aim2 inflammasome regulates atherosclerotic plaque vulnerability. Circulation 138, 321–323 (2018).

    Article  PubMed  Google Scholar 

  75. Fukuda, K. et al. AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. J. Exp. Med. 218, e20200962 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coll, R. C., Robertson, A., Butler, M., Cooper, M. & O’Neill, L. A. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS ONE 6, e29539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiao, Y. et al. Discovery of a novel and potent inhibitor with differential species-specific effects against NLRP3 and AIM2 inflammasome-dependent pyroptosis. Eur. J. Med. Chem. 232, 114194 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Green, J. P. et al. Discovery of an inhibitor of DNA-driven inflammation that preferentially targets the AIM2 inflammasome. iScience 26, 106758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kaminski, J. J. et al. Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation. J. Immunol. 191, 3876–3883 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Khare, S. et al. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat. Immunol. 15, 343–353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maruzuru, Y. et al. Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication. Cell Host Microbe 23, 254–265.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. DeYoung, K. L. et al. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 15, 453–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Lammert, C. R. et al. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580, 647–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ma, C. et al. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. J. Exp. Med. 218, e20201796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chou, W. C. et al. AIM2 in regulatory T cells restrains autoimmune diseases. Nature 591, 300–305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jamilloux, Y., Magnotti, F., Belot, A. & Henry, T. The pyrin inflammasome: from sensing RhoA GTPases-inhibiting toxins to triggering autoinflammatory syndromes. Pathog. Dis. 76, fty020 (2018).

    Article  Google Scholar 

  87. Schnappauf, O., Chae, J. J., Kastner, D. L. & Aksentijevich, I. The pyrin inflammasome in health and disease. Front. Immunol. 10, 1745 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao, W., Yang, J., Liu, W., Wang, Y. & Shao, F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, E4857–E4866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Masters, S. L. et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci. Transl. Med. 8, 332ra345 (2016).

    Article  Google Scholar 

  92. Moghaddas, F. et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever. Ann. Rheum. Dis. 76, 2085–2094 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Malik, H. S. et al. Phosphoprotein phosphatase activity positively regulates oligomeric pyrin to trigger inflammasome assembly in phagocytes. mBio 14, e0206623 (2023).

    Article  PubMed  Google Scholar 

  94. Lancieri, M. et al. An update on familial mediterranean fever. Int. J. Mol. Sci. 24, 9584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Van Gorp, H. et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, 14384–14389 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Weng, J. H. et al. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat. Metab. 3, 513–522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thomas, G., Girre, C., Scherrmann, J. M., Francheteau, P. & Steimer, J. L. Zero-order absorption and linear disposition of oral colchicine in healthy volunteers. Eur. J. Clin. Pharmacol. 37, 79–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  98. Alimov, I. et al. Bile acid analogues are activators of pyrin inflammasome. J. Biol. Chem. 294, 3359–3366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Magnotti, F. et al. Steroid hormone catabolites activate the pyrin inflammasome through a non-canonical mechanism. Cell Rep. 41, 111472 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, J. W. et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell 28, 214–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nishitani-Isa, M. et al. Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. J. Exp. Med. 219, e20211889 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spel, L. et al. CDC42 regulates PYRIN inflammasome assembly. Cell Rep. 41, 111636 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Li, Y., Yu, M. & Lu, M. Pathophysiology, clinical manifestations and current management of IL-1 mediated monogenic systemic autoinflammatory diseases, a literature review. Pediatr. Rheumatol. Online J. 20, 90 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Baker, P. J. et al. NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immunol. 45, 2918–2926 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Schroder, K. et al. Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc. Natl Acad. Sci. USA 109, E944–E953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015). Together with Kayagaki et al. (2015), these back-to-back studies show that GSDMD is the pyroptotic effector molecule that is cleaved and activated by inflammatory caspases.

    Article  CAS  PubMed  Google Scholar 

  111. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by Gram-negative bacteria. Cell 150, 606–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar667 (2018).

    Article  Google Scholar 

  116. Burgener, S. S. & Schroder, K. Neutrophil extracellular traps in host defense. Cold Spring Harb. Perspect. Biol. 12, a037028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chan, A. H. et al. Caspase-4 dimerisation and D289 auto-processing elicit an interleukin-1β-converting enzyme. Life Sci. Alliance 6, e202301908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Devant, P. et al. Structural insights into cytokine cleavage by inflammatory caspase-4. Nature 624, 451–459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kajiwara, Y. et al. The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum. Mol. Genet. 25, 4315–4327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hitomi, J. et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J. Cell Biol. 165, 347–356 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, C. et al. Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis. J. Biol. Chem. 288, 17908–17917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boxer, M. B. et al. A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety. ChemMedChem 5, 730–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hardy, J. A., Lam, J., Nguyen, J. T., O’Brien, T. & Wells, J. A. Discovery of an allosteric site in the caspases. Proc. Natl Acad. Sci. USA 101, 12461–12466 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Csak, T. et al. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int. 34, 1402–1413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim, H. Y., Kim, S. J. & Lee, S. M. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J. 282, 259–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Perera, A. P. et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci. Rep. 8, 8618 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wang, H. & Ma, Y. C. Role of NLRP1 and NLRP3 inflammasome signaling pathways in the immune mechanism of inflammatory bowel disease in children [Chinese]. Zhongguo Dang Dai Er Ke Za Zhi 22, 854–859 (2020).

    CAS  PubMed  Google Scholar 

  129. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mao, L. et al. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn’s disease. J. Clin. Invest. 128, 1793–1806 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Voet, S., Srinivasan, S., Lamkanfi, M. & van Loo, G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol. Med. 11, e10248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Denes, A. et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc. Natl Acad. Sci. USA 112, 4050–4055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Broz, P., von Moltke, J., Jones, J. W., Vance, R. E. & Monack, D. M. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207–1222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Baroja-Mazo, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Schmidt, F. I. et al. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J. Exp. Med. 213, 771–790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bertheloot, D. et al. Nanobodies dismantle post-pyroptotic ASC specks and counteract inflammation in vivo. EMBO Mol. Med. 14, e15415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. de Rivero Vaccari, J. P. et al. Mechanism of action of IC 100, a humanized IgG4 monoclonal antibody targeting apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Transl. Res. 251, 27–40 (2023).

    Article  PubMed  Google Scholar 

  144. Desu, H. L. et al. IC 100: a novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. J. Neuroinflammation 17, 143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Soriano-Teruel, P. M. et al. Identification of an ASC oligomerization inhibitor for the treatment of inflammatory diseases. Cell Death Dis. 12, 1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen, C. et al. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J. Neuroinflammation 19, 315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, W. et al. Spirodalesol analog 8A inhibits NLRP3 inflammasome activation and attenuates inflammatory disease by directly targeting adaptor protein ASC. J. Biol. Chem. 298, 102696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215, 827–840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Thygesen, S. J. et al. Fluorochrome-labeled inhibitors of caspase-1 require membrane permeabilization to efficiently access caspase-1 in macrophages. Eur. J. Immunol. 54, e2350515 (2024).

    Article  PubMed  Google Scholar 

  150. Wannamaker, W. et al. (S)-1-((S)-2-[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1ß and IL-18.J. Pharmacol. Exp. Ther. 321, 509–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Stack, J. H. et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 175, 2630–2634 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthr. Cartil. 11, 738–746 (2003).

    Article  CAS  Google Scholar 

  153. MacKenzie, S. H., Schipper, J. L. & Clark, A. C. The potential for caspases in drug discovery. Curr. Opin. Drug. Discov. Devel 13, 568–576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 103, 2–30 (2013).

    Article  PubMed  Google Scholar 

  155. Dhani, S., Zhao, Y. & Zhivotovsky, B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis. 12, 949 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Agard, N. J., Maltby, D. & Wells, J. A. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell Proteom. 9, 880–893 (2010).

    Article  CAS  Google Scholar 

  157. Phulphagar, K. et al. Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis. Cell Rep. 34, 108826 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Fischer, F. A., Chen, K. W. & Bezbradica, J. S. Posttranslational and therapeutic control of gasdermin-mediated pyroptosis and inflammation. Front. Immunol. 12, 661162 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Devant, P. & Kagan, J. C. Molecular mechanisms of gasdermin D pore-forming activity. Nat. Immunol. 24, 1064–1075 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Monteleone, M. et al. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021). This paper reports the discovery that NINJ1 is activated downstream of GSDMD to drive plasma membrane rupture during pyroptotic cell death.

    Article  CAS  PubMed  Google Scholar 

  163. Wang, D. et al. Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced pyroptosis. Cell Death Differ. 27, 466–481 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Russo, H. M. et al. Active caspase-1 induces plasma membrane pores that precede pyroptotic lysis and are blocked by lanthanides. J. Immunol. 197, 1353–1367 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Devant, P. et al. Gasdermin D pore-forming activity is redox-sensitive. Cell Rep. 42, 112008 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Balasubramanian, A. et al. The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis. Sci. Immunol. 9, eadn1452 (2024).

    Article  CAS  PubMed  Google Scholar 

  167. Du, G. et al. ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature 630, 437–446 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, eaat2738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, J. et al. Direct inhibition of GSDMD by PEITC reduces hepatocyte pyroptosis and alleviates acute liver injury in mice. Front. Immunol. 13, 825428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, Y., Pu, D., Huang, J., Zhang, Y. & Yin, H. Protein phosphatase 1 regulates phosphorylation of gasdermin D and pyroptosis. Chem. Commun. 58, 11965–11968 (2022).

    Article  CAS  Google Scholar 

  173. Luchetti, G. et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29, 1521–1530.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cao, R. et al. Identification of a small molecule with strong anti-inflammatory activity in experimental autoimmune encephalomyelitis and sepsis through blocking gasdermin D activation. J. Immunol. 209, 820–828 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Weber, A., Wasiliew, P. & Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal. 3, cm1 (2010).

    PubMed  Google Scholar 

  177. Coll, R. C. in Inflammasome Biology (ed. Pelegrin, P.) 583–603 (Elsevier, 2023).

  178. Broderick, L. & Hoffman, H. M. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat. Rev. Rheumatol. 18, 448–463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hommel, U. et al. Discovery of a selective and biologically active low-molecular weight antagonist of human interleukin-1β. Nat. Commun. 14, 5497 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kaplanski, G. Interleukin-18: biological properties and role in disease pathogenesis. Immunol. Rev. 281, 138–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Dinarello, C. A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol. 15, 612–632 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Dinarello, C. A., Novick, D., Kim, S. & Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front. Immunol. 4, 289 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ihim, S. A. et al. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: biological role in induction, regulation, and treatment. Front. Immunol. 13, 919973 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Gabay, C. et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 77, 840–847 (2018).

    CAS  PubMed  Google Scholar 

  187. Wlodek, E. et al. A pilot study evaluating GSK1070806 inhibition of interleukin-18 in renal transplant delayed graft function. PLoS ONE 16, e0247972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hakim, A. D. et al. Efficacy and safety of MAS825 (anti-IL-1β/IL-18) in COVID-19 patients with pneumonia and impaired respiratory function. Clin. Exp. Immunol. 213, 265–275 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fleischmann, R. M. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 48, 927–934 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Pockros, P. J. et al. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology 46, 324–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Shiffman, M. L. et al. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor—a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment. Pharmacol. Ther. 31, 969–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Han, A. et al. Development of novel glucocorticoids for use in antibody–drug conjugates for the treatment of inflammatory diseases. J. Med. Chem. 64, 11958–11971 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug. Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Narasipura, E. A., VanKeulen-Miller, R., Ma, Y. & Fenton, O. S. Ongoing clinical trials of nonviral siRNA therapeutics. Bioconjug Chem. 34, 1177–1197 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Madurka, I. et al. DFV890: a new oral NLRP3 inhibitor-tested in an early phase 2a randomised clinical trial in patients with COVID-19 pneumonia and impaired respiratory function. Infection 51, 641–654 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Klughammer, B. et al. P805 selnoflast, a potent NLRP3 inhibitor—results from a phase 1b experimental medicine study in patients with ulcerative colitis. J. Crohn’s Colitis 17, i938 (2023).

    Article  Google Scholar 

  197. Parmar, D. V. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral NLRP3 inflammasome inhibitor ZYIL1: first-in-human phase 1 studies (single ascending dose and multiple ascending dose). Clin. Pharmacol. Drug. Dev. 12, 202–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Harrison, D. et al. Discovery of clinical candidate NT-0796, a brain-penetrant and highly potent NLRP3 inflammasome inhibitor for neuroinflammatory disorders. J. Med. Chem. 66, 14897–14911 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Doedens, J. R. et al. Pharmacological analysis of NLRP3 inflammasome inhibitor sodium [(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1H-pyrazol-4-yl)([(2S)-oxolan-2-yl]methyl)sulfamoyl]azanide in cellular and mouse models of inflammation provides a translational framework.ACS Pharmacol. Transl. Sci. 7, 1438–1456 (2024).

    Article  CAS  PubMed  Google Scholar 

  200. Zheng, D. et al. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat. Immunol. 24, 585–594 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Prochnicki, T. et al. Mitochondrial damage activates the NLRP10 inflammasome. Nat. Immunol. 24, 595–603 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. Carta, S. et al. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proc. Natl Acad. Sci. USA 112, 2835–2840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang, Q. et al. Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. Int. Immunol. 25, 363–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Degen, M. et al. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065–1071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072–1077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Broz, P. et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ross, C., Chan, A. H., Von Pein, J., Boucher, D. & Schroder, K. Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome. Life Sci. Alliance 1, e201800237 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Budden, C. F. et al. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J. Extracell. Vesicles 10, e12127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Coombs, J. R. et al. NLRP12 interacts with NLRP3 to block the activation of the human NLRP3 inflammasome. Sci. Signal. 17, eabg8145 (2024).

    Article  CAS  PubMed  Google Scholar 

  211. Bulau, A. M. et al. Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. Proc. Natl Acad. Sci. USA 111, 2650–2655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.C.C. thanks K. Wilhelmson for helpful discussions of NLRP3 inhibitors.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Rebecca C. Coll or Kate Schroder.

Ethics declarations

Competing interests

R.C.C. and K.S. are co-inventors on patent applications for NLRP3 inhibitors that have been licensed to Inflazome Ltd, a company acquired by Roche. K.S. served on the scientific advisory board of Inflazome (2016–2017) and Quench Bio, USA (2018–2021) and serves on a scientific advisory board for Novartis, Switzerland (since 2020). R.C.C. is a consultant for BioAge Labs, USA (since 2020) and serves on the scientific advisory board of Viva In Vitro diagnostics, Spain (since 2024).

Peer review

Peer review information

Nature Reviews Immunology thanks Fayyaz Sutterwala, who co-reviewed with Diogo Valadares, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Noncanonical inflammasomes: signalling, pyroptosis and NETosis in host defence: https://youtu.be/-etkTCbnB1w?si=NVx3csYGC-xGF0y3

The inflammasome signalling pathway updated: https://youtu.be/-FNFZ9F1eB4?si=K6OSBez1AtWJKLnR

Supplementary information

Glossary

Alarmins

Host molecules that are released or exposed upon cell damage or cell death, which trigger immune responses.

Allosteric inhibitors

Compounds that bind to an enzyme at a site other than its active site, thereby rendering the enzyme unable to bind to its substrate.

Canonical inflammasomes

Multi-protein signalling complexes that activate caspase 1 (CASP1) to induce inflammatory responses and pyroptosis.

Liquid–liquid phase separation

A form of phase transition in which one homogeneous solution spontaneously separates into two distinct liquids, caused by self-aggregation of a molecule in the dense phase.

Monogenic autoinflammatory diseases

Rare diseases caused by single gene mutations that elicit hyperactive innate immune responses, resulting in periodic or chronic inflammation.

Nanobodies

Small, single-domain antibodies containing a single, monomeric, variable antibody domain that binds to an antigen.

Non-canonical inflammasomes

Protein–lipid assemblies that activate caspase 4 (CASP4) and CASP5 in humans, and CASP11 in mice, to induce inflammatory responses and pyroptosis.

Pyroptosis

Programmed cell lysis mediated by gasdermin family members, often occurring downstream of inflammasomes.

Tool compound

A small molecule with a defined structure and well-characterized activity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll, R.C., Schroder, K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 25, 22–41 (2025). https://doi.org/10.1038/s41577-024-01075-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-024-01075-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research