Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction

A Publisher Correction to this article was published on 27 January 2025

This article has been updated

Abstract

All-solid-state lithium metal batteries promise high levels of safety and energy density, but their practical realization is limited by low Li reversibility, limited cell loading and demand for high-temperature and high-pressure operation, stemming from solid-state electrolyte (SSE) low-voltage reduction and high-voltage decomposition, and from lithium dendrite growth. Here we concurrently address these challenges by reporting that a family of reductive electrophiles gain electrons and cations from metal–nucleophile materials (here a Li sulfide SSE) upon contact to undergo electrochemical reduction and form interphase layers (named solid reductive-electrophile interphase) on material surfaces. The solid reductive-electrophile interphase is electron blocking and lithiophobic, prevents SSE reduction, suppresses Li dendrites and supports high-voltage cathodes. Consequently, a reductive-electrophile-treated SSE exhibits high critical capacity and Li reversibility at the anode, and enables Li(1% Mg)/SSE/LiNi0.8Co0.15Al0.05O2 all-solid-state lithium metal batteries to achieve a high coulombic efficiency (>99.9%), long cycle life (~10,000 h) and high loading (>7 mAh cm−2) at 30 °C and 2.5 MPa. This concept also extends to cathodes of other materials (for example, metal oxides), boosting the high-nickel cathode’s cycle life and expanding the operational voltage up to 4.5 V. Such solid reductive-electrophile interphase tailoring of material surfaces holds promise to accelerate all-solid-state lithium metal battery commercialization and offer solutions for a wide range of materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the ‘electrochemical electrophile reduction’ strategy.
Fig. 2: The electrophile design and reaction mechanism of electrophile reduction.
Fig. 3: Stability of SREI LPSC on the Li anode.
Fig. 4: Electrochemical performance of DPF LPSC in all-solid-state lithium metal cell.
Fig. 5: The application of electrophile reduction strategy on electrodes and their electrochemical performance.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are available in the Article. Atomic configurations of the computational models constructed in this study are available via figshare at https://doi.org/10.6084/m9.figshare.27228867 (ref. 57). Source data are provided with this paper.

Change history

References

  1. Lacivita, V., Artrith, N. & Ceder, G. Structural and compositional factors that control the Li-ion conductivity in LiPON electrolytes. Chem. Mater. 30, 7077–7090 (2018).

    Article  CAS  Google Scholar 

  2. Schwietert, T. K., Vasileiadis, A. & Wagemaker, M. First-principles prediction of the electrochemical stability and reaction mechanisms of solid-state electrolytes. JACS Au 1, 1488–1496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ji, X. et al. Solid‐state electrolyte design for lithium dendrite suppression. Adv. Mater. 32, 2002741 (2020).

    Article  CAS  Google Scholar 

  5. Park, S. H. et al. Designing 3D anode based on pore‐size‐dependent Li deposition behavior for reversible Li‐free all‐solid‐state batteries. Adv. Sci. 9, 2203130 (2022).

    Article  CAS  Google Scholar 

  6. Cho, S. et al. Highly reversible lithium host materials for high‐energy‐density anode‐free lithium metal batteries. Adv. Funct. Mater. 32, 2208629 (2022).

    Article  CAS  Google Scholar 

  7. Gu, D., Kim, H., Lee, J.-H. & Park, S. Surface-roughened current collectors for anode-free all-solid-state batteries. J. Energy Chem. 70, 248–257 (2022).

    Article  CAS  Google Scholar 

  8. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article  CAS  Google Scholar 

  9. Zhou, L. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article  CAS  Google Scholar 

  10. Wu, Z. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8, 340–350 (2023).

    CAS  Google Scholar 

  11. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Arnold, W. et al. Synthesis of fluorine-doped lithium argyrodite solid electrolytes for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 14, 11483–11492 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, M. J., Kazyak, E., Dasgupta, N. P. & Sakamoto, J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021).

    Article  CAS  Google Scholar 

  14. Raj, V. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  CAS  Google Scholar 

  16. Simon, F. J., Hanauer, M., Henss, A., Richter, F. H. & Janek, J. Properties of the interphase formed between argyrodite-type Li6PS5Cl and polymer-based PEO10:LiTFSI. ACS Appl. Mater. Interfaces 11, 42186–42196 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Choi, H. J. et al. In situ formed Ag‐Li intermetallic layer for stable cycling of all‐solid‐state lithium batteries. Adv. Sci. 9, 2103826 (2022).

    Article  CAS  Google Scholar 

  18. Su, Y. et al. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 13, 908–916 (2020).

    Article  CAS  Google Scholar 

  19. Sung, J. et al. Ultra‐thin lithium silicide interlayer for solid‐state lithium‐metal batteries. Adv. Mater. 35, 2210835 (2023).

    Article  CAS  Google Scholar 

  20. Wang, T. et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci. 15, 1325–1333 (2022).

    Article  Google Scholar 

  21. Lee, S. et al. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Sci. Adv. 8, eabq0153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan, H. et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023).

    Article  CAS  Google Scholar 

  23. Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  26. Park, R. J.-Y. et al. Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy 6, 314–322 (2021).

    Article  CAS  Google Scholar 

  27. Banerjee, A., Wang, X., Fang, C., Wu, E. A. & Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  29. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer Science & Business Media, 2011).

  30. Liou, S.-C., Oleshko, V. P., Kuo, W. C.-H., Yang, T.-J. & Shu, G.-J. Investigation of the excitations of plasmons and surface exciton polaritons in monoclinic gadolinium sesquioxide by electron energy-loss spectroscopy and plasmon spectroscopic imaging. RSC Adv. 12, 10345–10354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article  CAS  Google Scholar 

  32. Chen, Y. et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  Google Scholar 

  35. Margolis, H. C., Kwak, S.-Y. & Yamazaki, H. Role of mineralization inhibitors in the regulation of hard tissue biomineralization: relevance to initial enamel formation and maturation. Front. Physiol. 5, 339 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cölfen, H. & Mann, S. Higher‐order organization by mesoscale self‐assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

    Article  Google Scholar 

  37. Kozen, A. C., Pearse, A. J., Lin, C.-F., Noked, M. & Rubloff, G. W. Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 27, 5324–5331 (2015).

    Article  CAS  Google Scholar 

  38. Xia, H.-Y. et al. A new carbon-incorporated lithium phosphate solid electrolyte. J. Power Sources 514, 230603 (2021).

    Article  CAS  Google Scholar 

  39. Tan, S. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022).

    Article  CAS  Google Scholar 

  40. Shi, P. et al. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS Appl. Mater. Interfaces 10, 22201–22209 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Cheng, D. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article  CAS  Google Scholar 

  42. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  CAS  Google Scholar 

  44. Zhao, L. et al. Taming metal–solid electrolyte interface instability via metal strain hardening. Adv. Energy Mater. 13, 2300679 (2023).

  45. Robinson, E. A. The preparation and Raman spectrum of diphosphoryl tetrafluoride: comparison with the spectrum of diphosphoryl tetrachloride. Can. J. Chem. 40, 1725–1729 (1962).

    Article  CAS  Google Scholar 

  46. Wang, X., Ye, L., Nan, C.-W. & Li, X. Effect of solvents on a Li10GeP2S12-based composite electrolyte via solution method for solid-state battery applications. ACS Appl. Mater. Interfaces 14, 46627–46634 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Wan, H. et al. F and N rich solid electrolyte for stable all‐solid‐state battery. Adv. Funct. Mater. 32, 2110876 (2022).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  51. Golov, A. & Carrasco, J. Molecular-level insight into the interfacial reactivity and ionic conductivity of a Li-argyrodite Li6PS5Cl solid electrolyte at bare and coated Li-metal anodes. ACS Appl. Mater. Interfaces 13, 43734–43745 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  53. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  54. Evans, D. J. & Holian, B. L. The Nose–Hoover thermostat. J. Chem. Phys. 83, 4069–4074 (1985).

    Article  CAS  Google Scholar 

  55. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  57. Wang, Z. Atomistic configurations of solvent-LPSC slab and solvent-Li cluster. figshare https://doi.org/10.6084/m9.figshare.27228867 (2024).

Download references

Acknowledgements

The work was supported by the US Department of Energy under award number DE-AC05-76RL01830, received by C.W. We appreciate the technical support from the Maryland NanoCenter.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. conceived the idea; performed experiments; and wrote the manuscript. Z.W. performed molecular simulations and density functional theory calculations. H.W. helped with the testing. A.-M.L. performed chemical synthesizing. Y.L. and Y.R. helped with cathode preparation. S.-C.L. helped with scanning transmission electron microscopy measurement. K.Z. discussed the mechanism. C.J. and B.L.L. helped with the XPS test. C.W. supervised the study and the manuscript writing. All authors discussed the results.

Corresponding author

Correspondence to Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ji-Guang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–56, Notes 1 and 2, Tables 1–4 and Refs. 1–17.

Source data

Source Data Fig. 1

Reduction potential data plotted in Fig. 1d and radar chart plotted in Fig. 1e.

Source Data Fig. 2

Thickness reference from previous reports as shown in Fig. 2f, net charge evolution plotted in Fig. 2g and XPS data plotted in Fig. 2i–k.

Source Data Fig. 3

Electrochemical data plotted in Fig. 3a–f.

Source Data Fig. 4

Electrochemical data plotted in Fig. 4a–d.

Source Data Fig. 5

XPS data plotted in Fig. 5c and electrochemical data plotted in Fig. 5d,e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, Z., Wan, H. et al. Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction. Nat. Mater. (2025). https://doi.org/10.1038/s41563-024-02064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-02064-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing