Predictors of Low Back Pain Risk among Rubber Harvesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sample Size Calculation and Sampling Technique
2.3. Data Collection Tools and Procedures
2.4. Data Analysis
2.5. Ethics Consideration
3. Results
3.1. Subject Characteristics
3.2. Predictors of Low Back Pain (LBP) among Rubber Harvesting
3.2.1. Multivariate Analysis
3.2.2. Three-Marker Model
3.2.3. Four-Markers Model
3.2.4. Potential Value of Risk Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bevan, S. Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Pract. Res. Clin. Rheumatol. 2015, 29, 356–373. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Labor Statistics. Occupational Injuries, and Illnesses by Selected Characteristics for State and Local Government News Release. U.S., 2014. Available online: http://www.bls.gov/news.release/archives/osh2_11262013.htm (accessed on 6 April 2022).
- McMillan, M.; Trask, C.; Dosman, J.; Hagel, L.; Pickett, W. Saskatchewan Farm Injury Cohort Study Team. Prevalence of musculoskeletal disorders among Saskatchewan farmers. J. Agromed. 2015, 20, 292–301. [Google Scholar] [CrossRef]
- Kolstrup, C.L. Work-related musculoskeletal discomfort of dairy farmers and employed workers. Occupational Medicine and Toxicology. J. Occup. Med. Toxicol. 2012, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, A.H.; Islam, M.S.; Haque, M.M.; Parveen, T.N. Prevalence of Musculoskeletal Disorders among Farmers. Orthop. Rheumatol. 2016, 4, 00125. [Google Scholar] [CrossRef]
- NG, Y.G.; Tamrin, S.B.M.; YIK, W.M.; Syah, I. Prevalence of Musculoskeletal Disorder and Association with Productivity Loss: A Preliminary Study among Labour Intensive Manual Harvesting Activities in Oil Palm Plantation. Public Health J. Burapha Univ. Ind. Health 2017, 52, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Stankevitz, K.; Schoenfisch, A.; Silva, V.D.; Tharindra, H.; Stroo, M.; Ostbye, T. Prevalence and risk factors of musculoskeletal disorders among Sri Lankan rubber tappers. Occup. Environ. Health 2016, 22, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Intranuovo, G.; De Maria, L.D.; Facchini, F.; Giustiniano, A.; Caputi, A.; Birtolo, F.; Vimercati, L. Risk assessment of upper limbs repetitive movements in a fish industry. BMC Res. Notes 2019, 12, 354. [Google Scholar] [CrossRef] [Green Version]
- Gadhavi, B.; Shukla, Y. Prevalence of work-related musculoskeletal disorders in farmers of Gujarat. Ijrr J. 2019, 6, 231–236. [Google Scholar]
- Sombatsawat, E.; Luangwilai, T.; Ong-artborirak, P.; Siriwong, W. Musculoskeletal disorders among rice farmers in Phimai District, Nakhon Ratchasima Province, Thailand. J. Health Res. 2019, 33, 494–503. [Google Scholar] [CrossRef]
- Tsegay, G.S.; Gebremeskel, B.F.; Gezahegn, S.D.; Teklemichael, D.M. Low back pain and associated factors among hairdressers in Northern Ethiopia: A cross-sectional study. Pain Res. Manag. 2021, 2021, 2408413. [Google Scholar]
- Lombardi, G.; Ziemann, E.; Banfi, G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front. Endocrinol. 2019, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonelli, S.; Culp, K.; Donham, K. Work-related musculoskeletal disorders in senior farmers: Safety and health considerations. Workplace Health Saf. 2014, 62, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, S.; Vézina, N. Work training and MSDs prevention: Contribution of Ergonomics. Int. J. Ind. Ergon. 2014, 44, 24–31. [Google Scholar] [CrossRef]
- Caffaro, F.; Lundqvist, P.; Cremasco, M.M.; Nilsson, K.; Pinzke, S.; Cavallo, E. Machinery-Related Perceived Risks and Safety Attitudes in Senior Swedish Farmers. J. Agromed. 2017, 23, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Shibu, T.M. Posturedontics in dentistry: A review. J. Dent. Oral Hyg. 2015, 7, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Gasibat, Q.; Bin Simbak, N.B.; Abd Aziz, A. Stretching Exercises to Prevent Work–related musculoskeletal Disorders-A Review Article. Am. J. Sports Sci. Med. 2017, 5, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Kongtawelert, A.; Buchholz, B.; Sujitrarath, D.; Laohaudomchok, W.; Kongtip, P.; Woskie, S. Prevalence and factors associated with musculoskeletal disorders among Thai Burley Tobacco farmers. Int. J. Environ. Res. Public Health 2022, 19, 6779. [Google Scholar] [CrossRef]
- Sukadarin, E.H.; Deros, B.M.; Ghani, J.A.; Ismail, A.R. A Review of Work-Related Musculoskeletal Problems in Agricultural Industry. Aust. J. Basic Appl. Sci. 2014, 8, 56–59. [Google Scholar]
- Trask, C.; Bath, B.; Johnson, P.W.; Teschke, K. Risk Factors for Low Back Disorders in Saskatchewan Farmers: Field-based Exposure Assessment to Build a Foundation for Epidemiological Studies. JMIR Res. Protoc. 2016, 5, 111. [Google Scholar] [CrossRef]
- Agriculture Information Center Office of Agricultural Economics. Rubber Plantation Area in the South Classified by Province. Thailand, 2017. Available online: https://www.moac.go.th/ (accessed on 6 April 2022).
- Maciuba, S.A.; Westneat, S.C.; Reed, D.B. Active coping, personal satisfaction and attachment to land in older African-American farmers. Issues Ment. Health Nurs. 2013, 34, 335–343. [Google Scholar] [CrossRef]
- Meksawia, S.; Tangtrakulwanichb, B.; Chongsuvivatwonga, V. Musculoskeletal problems and ergonomic risk assessment in rubber tappers: A community-based study in southern Thailand. Int. J. Ind. Ergon. 2012, 42, 129–135. [Google Scholar] [CrossRef]
- Saksorngmuang, P.; Kaewboonchoo, O.; Ross, R.; Boonyamalik, P. Working hazards and health problems among rubber farmers in Thailand. Walailak J. Sci. Technol. 2020, 17, 222–236. [Google Scholar] [CrossRef]
- Bernard, B.P. Musculoskeletal Disorders and Workplace Factors: Critical Review of Epidemiology Evidence for Work Related Musculoskeletal Disorder of the Neck, Upper Extremity and Low Back. 2012. Available online: http://www.cdc.gov/niosh/97141pd.html (accessed on 6 April 2022).
- Srisaat, B. Statistical Methods for Research; Northeastern University Press: Bangkok, Thailand, 2013. [Google Scholar]
- Cabral, A.M.; Moreira, R.F.C.; Barros, F.C.; Sato, T.O. Is physical capacity associated with the occurrence of musculoskeletal symptoms among office workers? A cross-sectional study. Int. Arch. Occup Environ. Health 2019, 92, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Kuorinka, I.; Jonsson, B.; Kilbom, A.; Vinterberg, H.; Bierring-Sorensen, F.; Andersson, G. Standardized Nordic Questionnaires for the Analysis of Musculoskeletal Symptoms. Appl. Ergon. 1987, 18, 233–237. [Google Scholar] [CrossRef]
- Hong, X.; Lee, Y.C.; Zhou, S. Risk factors associated with musculoskeletal disorders symptoms among manual porcelain workers at different workstations. Int. Arch. Occup. Environ. Health 2022. [Google Scholar] [CrossRef]
- McHugh, M.L. The odds ratio: Calculation, usage, and interpretation. Biochem. Med. 2009, 19, 120–126. [Google Scholar] [CrossRef]
- Nordin, M.; Andersson, B.J.G.; Pope, H.M. Musculoskeletal Disorders in the Workplace: Principles and Practice; Mosby: London, UK, 1997. [Google Scholar]
- Cook, C.; Learman, K.; Showalter, C.; O’Halloran, B. The relationship between chief complaint and comparable sign in patients with spinal pain: An exploratory study. Man Ther. 2015, 20, 451–455. [Google Scholar] [CrossRef]
- Udom, C.; Kanlayanaphotporn, R.; Janwantanakul, P. Predictors for nonspecific low back pain in rubber farmers: A 1-year prospective cohort study. Asia Pac. J. Public Health 2019, 31, 7–17. [Google Scholar] [CrossRef]
- Fathallah, F.A.; Meyers, J.M. Stooped and Squatting Postures in the Workplace. 2012. Available online: http://nasdonline.org/staticcontent/documents/1927/d001873.pdf (accessed on 6 April 2022).
- Rongthong, M.; Kongtawelert, A.; Sujirarat, D.; Bhuanantanondh, P. Prevalence of musculoskeletal Disorders among new oil palm harvesting workers. HCU J. Health Sci. 2019, 23, 75–92. [Google Scholar]
- Van, L.; Chaiear, N.; Sumananont, C.; Kannarath, C. Prevalence of musculoskeletal symptoms among garment workers in Kandal Province, Cambodia. J. Occup. Health 2016, 58, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.; Serranheira, F.; Loureiro, H. Work related musculoskeletal disorders in primary health care nurses. Appl. Nurs. Res. 2017, 33, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Varianou-Mikellidou, C.; Boustras, G.; Dimopoulos, C.; Wybo, J.; Guldenmund, F.W.; Nicolaidou, O.; Anyfantis, I. Occupational health and safety management in the context of an ageing workforce. Saf. Sci. 2019, 116, 231–244. [Google Scholar] [CrossRef]
- Mongkonkansai, J.; Thanapop, C.; Madardam, U.; Cheka, A.; Epong, A.; Arwae, A. Factors related to musculoskeletal disorders in quality control palm workers at palm purchasing establishments in Sichon District, Nakhon Si Thammarat, Thailand. Ann. Agric. Environ. Med. 2020, 27, 207–210. [Google Scholar] [CrossRef]
- Ng, Y.G.; Mohd Tamrin, S.B.; Mohd Yusoff, I.S.; Hashim, Z.; Deros, B.M.; Abu Bakar, S.; How, V. Risk factors of musculoskeletal disorders among oil palm fruit harvesters during early harvesting stage. Ann. Agric. Environ. Med. 2015, 22, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Kee, D.; Haslam, R. Prevalence of work-related musculoskeletal disorders in agriculture workers in Korea and preventative interventions. Work 2019, 64, 763–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonchoy, P.; Seangpraw, K. Factors associated with musculoskeletal disorders among lychee Farmers, Phayao Province. J. Health Educ. 2019, 42, 119–134. [Google Scholar]
- Ngammuang, P.; Suthakorn, W. Ergonomic risk factors associated with musculoskeletal disorders among physical therapists at community hospitals in health Region 1. Thai J. Public Health 2019, 49, 325–338. [Google Scholar]
- Hurwitz, E.L.; Randhawa, K.; Yu, H.; Côté, P.; Haldeman, S. The Global Spine Care Initiative: A summary of the global burden of low back and neck pain studies. Eur. Spine J. 2018, 27, 796–801. [Google Scholar] [CrossRef]
- Jain, R.; Meena, M.L.; Dangayach, G.S.; Bhardwaj, A.K. Association of risk factors with musculoskeletal disorders in manual-working farmers. Arch. Environ. Occup. Health 2018, 73, 19–28. [Google Scholar] [CrossRef]
- Min, D.; Baek, S.; Park, H.W.; Lee, S.A.; Moon, J.; Yang, J.E.; Kim, K.S.; Kim, J.Y.; Kang, E.K. Prevalence and characteristics of musculoskeletal pain in Korean farmers. Ann. Rehabil. Med. 2016, 40, 1–13. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, J.M.; Korb, P.; Hoppe, R.A. Farm Size and the Organization of U.S. Crop Farming: Economic Research Report No. 152; United States Department of Agriculture: Washington, DC, USA, 2013. [Google Scholar]
- Kumar, P.; Chakrabarti, D.; Patel, T.; Chowdhuri, A. Work-related pains among the workers associated with pineapple peeling in small fruit processing units of North East India. Int. J. Ind. Ergon. 2016, 53, 124–129. [Google Scholar] [CrossRef]
Characteristics | Category | Total n = 317 (%) | Without LBP n = 91 (%) | With LBP n = 226 (%) | OR | 95% Cl | p-Value |
---|---|---|---|---|---|---|---|
Sex | Male | 162 (51.1) | 49 (15.5) | 113 (35.6) | 0.535 | ||
Female | 155 (48.9) | 42 (13.2) | 113 (35.6) | 1.167 | 0.716–1.900 | ||
Age group | 21–30 years | 4 (1.3) | 1 (0.3) | 3 (0.9) | 0.750 | ||
31–40 years | 45 (14.2) | 12 (3.8) | 33 (10.4) | 0.917 | 0.087–9.686 | ||
41–50 years | 130 (41.0) | 34 (10.7) | 96 (30.3) | 0.941 | 0.095–9.357 | ||
51–60 years | 138 (43.5) | 44 (13.9) | 94 (29.7) | 0.712 | 0.072–7.041 | ||
= 48.33, S.D. = 7.201 | |||||||
Educational status | Didn’t study | 17 (5.4) | 2 (0.6) | 15 (4.7) | 0.302 | ||
Primary school | 162 (51.1) | 47 (14.8) | 115 (36.3) | 0.326 | 0.072–1.483 | ||
Secondary school | 63 (19.9) | 22 (6.9) | 41 (12.9) | 0.248 | 0.052–1.187 | ||
High school | 48 (15.1) | 10 (3.2) | 38 (12.0) | 0.507 | 0.099–2.590 | ||
Diploma | 9 (2.8) | 3 (0.9) | 6 (1.9) | 0.267 | 0.035–2.019 | ||
Bachelor’s degree | 18 (5.7) | 7 (2.2) | 11 (3.5) | 0.210 | 0.036–1.210 | ||
Marital status | Single | 23 (7.3) | 4 (1.3) | 19 (6.0) | 0.406 | ||
Married | 262 (82.6) | 79 (24.9) | 183 (57.7) | 0.488 | 0.161–1.480 | ||
Widow | 19 (6.0) | 6 (1.9) | 13 (4.1) | 0.456 | 0.107–1.942 | ||
Divorced | 13 (4.1) | 2 (0.6) | 11 (3.5) | 1.158 | 0.182–7.384 | ||
Body mass index (BMI) | Underweight | 207 (65.3) | 53 (16.7) | 154 (48.6) | 0.098 | ||
Healthy | 18 (5.7) | 4 (1.3) | 14 (4.4) | 1.205 | 0.380–3.820 | ||
Overweight | 81 (25.6) | 28 (8.8) | 53 (16.7) | 0.651 | 0.374–1.134 | ||
Obese | 11 (3.5) | 6 (1.9) | 5 (1.6) | 0.287 | 0.084–0.978 | ||
= 23.60, S.D. = 3.339 | |||||||
Smoking | No | 199 (62.8) | 58 (18.3) | 141 (44.5) | 0.822 | ||
Yes | 118 (37.2) | 33 (10.4) | 85 (26.8) | 1.060 | 0.639–1.756 | ||
Working experience (years) | 2–5 years | 39 (12.3) | 15 (4.7) | 24 (7.6) | 0.033 * | ||
6–10 years | 72 (22.7) | 29 (9.1) | 43 (13.6) | 0.927 | 0.417–2.060 | ||
11–15 years | 68 (21.5) | 14 (4.4) | 54 (17.0) | 2.411 | 1.007–5.770 | ||
15–20 years | 55 (17.4) | 12 (3.8) | 43 (13.6) | 2.240 | 0.903–5.556 | ||
>20 years | 83 (26.2) | 21 (6.6) | 62 (19.6) | 1.845 | 0.818–4.161 | ||
= 16.76, S.D. = 9.932 | |||||||
Physical activity | No | 161 (50.8) | 54 (17.0) | 107 (33.8) | 0.161 | ||
Exercise 3 days/week | 81 (25.6) | 17 (5.4) | 64 (20.2) | 1.900 | 1.015–3.556 | ||
Stretching 3 days/week | 17 (5.4) | 6 (1.9) | 11 (3.5) | 0.925 | 0.325–2.636 | ||
Household activity | 58 (18.3) | 14 (4.4) | 44 (13.9) | 1.586 | 0.800–3.145 | ||
Sufficient income a | Not enough(income 5000–15,000 baht) | 136 (42.9) | 23 (7.3) | 113 (35.6) | 0.001 ** | ||
Enough but not left (income >15,001–20,000 baht) | 126 (39.7) | 50 (15.8) | 76 (24.0) | 0.309 | 0.174–0.549 | ||
Enough to keep (income > 20,001 baht) | 55 (17.4) | 18 (5.7) | 37 (11.7) | 0.418 | 0.204–0.859 | ||
Stress/Anxiety | No | 142 (44.8) | 53 (16.7) | 89 (28.1) | 0.002 ** | ||
Yes | 175 (55.2) | 38 (12.0) | 137 (43.2) | 2.147 | 1.309–3.521 |
Characteristics | Category | Total n = 317 (%) | Without LBP n = 91 (%) | With LBP n = 226 (%) | OR | 95% Cl | p-Value |
---|---|---|---|---|---|---|---|
Working days off per week | No | 7 (2.2) | 2 (0.6) | 5 (1.6) | 0.085 | ||
1–2 Days/week | 251 (79.2) | 79 (24.9) | 172 (54.3) | 0.871 | 0.165–4.586 | ||
≥3 Days/week | 59 (18.6) | 10 (3.2) | 49 (15.5) | 1.960 | 0.332–11.568 | ||
Working hours per day | 1–4 h/day | 107 (33.8) | 26 (8.2) | 81 (25.6) | 0.236 | ||
5–8 h/day | 186 (58.7) | 60 (18.9) | 126 (39.7) | 0.674 | 0.394–1.155 | ||
9–12 h/day | 24 (7.6) | 5 (1.6) | 19 (6.0) | 1.220 | 0.414–3.591 | ||
Break time in a day | No | 53 (16.7) | 11 (3.5) | 42 (13.2) | 0.161 | ||
Yes | 264 (83.3) | 80 (25.2) | 184 (58.0) | 0.602 | 0.295–1.230 | ||
Inheritance career | No | 82 (25.9) | 31 (9.8) | 51 (16.1) | |||
Yes | 235 (74.1) | 60 (18.9) | 175 (55.2) | 1.773 | 1.039–3.024 | 0.034 * | |
Overtime | No | 227 (71.6) | 71 (22.4) | 156 (49.2) | 0.108 | ||
Yes | 90 (28.4) | 20 (6.3) | 70 (22.1) | 1.593 | 0.900–2.819 | ||
Agricultural registration b | No | 53 (16.7) | 22 (6.9) | 31 (9.8) | |||
Yes | 264 (83.3) | 69 (21.8) | 195 (61.5) | 2.006 | 1.088–3.697 | 0.024 * | |
Work without training (habitual work) | No | 52 (16.4) | 21 (6.6) | 31 (9.8) | |||
Yes | 265 (83.6) | 70 (22.1) | 195 (61.5) | 1.887 | 1.018–3.500 | 0.042 * |
Variables | Category | Total n = 317 (%) | Without LBP n = 91 (%) | With LBP n = 226 (%) | OR | 95% Cl | p-Value |
---|---|---|---|---|---|---|---|
Repeating movement | No | 33 (10.4) | 13 (4.1) | 20 (6.3) | |||
Yes | 284 (89.6) | 78 (24.6) | 206 (65.0) | 1.717 | 0.815–3.617 | 0.152 | |
Squatting | No | 74 (23.3) | 32 (10.1) | 42 (13.2) | |||
Yes | 243 (76.7) | 59 (18.6) | 184 (58.0) | 2.376 | 1.377–4.100 | 0.002 ** | |
Kneeling | No | 107 (33.8) | 43 (13.6) | 64 (20.2) | |||
Yes | 210 (66.2) | 48 (15.1) | 162 (51.1) | 2.268 | 1.371–3.750 | 0.001 ** | |
Heavy workload (Continue harvesting for ≥7 h) | No | 108 (34.1) | 44 (13.9) | 64 (20.2) | |||
Yes | 209 (65.9) | 47 (14.8) | 162 (51.1) | 2.370 | 1.433–3.918 | 0.001 ** | |
Getting muscle tension from the body directly | No | 111 (35.0) | 40 (12.6) | 71 (22.4) | |||
Yes | 206 (65.0) | 51 (16.1) | 155 (48.9) | 1.712 | 1.038–2.824 | 0.034 * | |
Heavy lifting c | No | 115 (36.3) | 40 (12.6) | 75 (23.7) | |||
Yes | 202 (63.7) | 51 (16.1) | 151 (47.6) | 1.579 | 0.960–2.598 | 0.071 | |
Prolonged standing (8 h consecutively) | No | 167 (52.7) | 64 (20.2) | 103 (32.5) | |||
Yes | 150 (47.3) | 27 (8.5) | 123 (38.8) | 2.831 | 1.682–4.763 | 0.001 ** | |
Exertion more than usual | No | 187 (59.0) | 61 (19.2) | 126 (39.7) | |||
Yes | 130 (41.0) | 30 (9.5) | 100 (31.5) | 1.614 | 0.969–2.687 | 0.065 | |
Awkward posture d | No | 203 (64.0) | 58 (18.3) | 145 (45.7) | |||
Yes | 114 (36.0) | 33 (10.4) | 81 (25.6) | 0.982 | 0.592–1.629 | 0.943 |
Multivariate Analysis | 3-Marker Model | 4-Marker Model | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | p-Value | AOR [95% CI] | R2 | B | p-Value | AOR [95% CI] | R2 | B | p-Value | AOR [95% CI] | R2 | B | p-Value | AOR [95% CI] | R2 | |
Sociodemographic/individual predictors | ||||||||||||||||
Working experience (years) | 0.418 | 0.144 | 1.519 [0.867–2.662] | 0.216 | 0.555 | 0.037 * | 1.743 [1.034–2.937] | 0.100 | ||||||||
Sufficient income a | 0.870 | 0.008 ** | 0.419 [0.220–0.799] | 0.935 | 0.002 ** | 0.393 [0.215–0.718] | ||||||||||
Stress/Anxiety | 0.228 | 0.467 | 1.256 [0.680–2.319] | 0.426 | 0.138 | 1.531 [0.872–2.690] | ||||||||||
Working profile predictors | ||||||||||||||||
Inheritance career | 0.477 | 0.119 | 1.612 [0.885–2.936] | 0.505 | 0.070 | 1.657 [0.960–2.861] | 0.057 | |||||||||
Agricultural registration b | 0.797 | 0.020 ** | 2.218 [1.132–4.346] | 0.704 | 0.028 * | 2.022 [1.078–3.792] | ||||||||||
Work without training (habitual work) | 0.676 | 0.054 | 1.966 [0.990–3.904] | 0.712 | 0.027 * | 2.037 [1.083–3.832] | ||||||||||
Ergonomics risk predictors | ||||||||||||||||
Squatting | 0.285 | 0.413 | 1.329 [0.672–2.630] | 0.558 | 0.082 | 1.748 [0.932–3.276] | 0.125 | |||||||||
Heavy workload(Continue harvesting for ≥7 h) | 0.553 | 0.061 | 1.739 [0.976–3.099] | 0.752 | 0.006 ** | 2.120 [1.242–3.621] | ||||||||||
Get muscle tension from the body directly | 0.510 | 0.144 | 0.600 [0.303–1.190] | 0.421 | 0.208 | 0.656 [0.341–1.264] | ||||||||||
Prolonged standing (8 h consecutively) | 1.081 | 0.001 ** | 2.948 [1.546–5.618] | 1.080 | 0.001 ** | 2.944 [1.586–5.465] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chokprasit, P.; Yimthiang, S.; Veerasakul, S. Predictors of Low Back Pain Risk among Rubber Harvesters. Int. J. Environ. Res. Public Health 2022, 19, 10492. https://doi.org/10.3390/ijerph191710492
Chokprasit P, Yimthiang S, Veerasakul S. Predictors of Low Back Pain Risk among Rubber Harvesters. International Journal of Environmental Research and Public Health. 2022; 19(17):10492. https://doi.org/10.3390/ijerph191710492
Chicago/Turabian StyleChokprasit, Parnchon, Supabhorn Yimthiang, and Siriluk Veerasakul. 2022. "Predictors of Low Back Pain Risk among Rubber Harvesters" International Journal of Environmental Research and Public Health 19, no. 17: 10492. https://doi.org/10.3390/ijerph191710492