SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability
Abstract
:1. Introduction
2. Structural Insights into STUbL Proteins and Regulation of STUbL Activity
2.1. Architecture of SIMs
2.2. Structural Characteristics of the RING Domain
2.3. Unique Structural Motifs in Human STUbLs
3. The Diverse Roles of STUbLs in Genome Maintenance
3.1. Functions in DNA Double-Strand Break (DSB) Repair
3.1.1. STUbLs in NHEJ
3.1.2. STUbLs in HR
3.1.3. STUbLs in Other DNA Repair Pathways
3.2. Roles in DNA Replication and the Replication Stress Response
3.2.1. Yeast STUbLs That Operate in DNA Replication
3.2.2. Functions of Mammalian STUbLs in DNA Replication
3.3. STUbL Participation in Mitotic Cell Division
3.3.1. STUbLs in Kinetochore- or Centromere-Specific Processes
3.3.2. STUbLs in Chromosome Segregation
3.4. STUbLs Localize Damaged DNA to the Nuclear Periphery
3.4.1. Processing of DSBs in rDNA, Heterochromatin, and Irreparable DSBs
3.4.2. Processing of Eroded Telomeres
3.4.3. Processing of Collapsed and Stalled Replication Forks
3.5. STUbLs Maintain the Homeostasis of Promyelocytic Leukemia Nuclear Bodies
3.6. STUbLs Regulate Gene Transcription
4. Crosstalk between STUbLs and Other SUMO and Ubiquitin Metabolic Processes
5. STUbLs Function in Protein Stabilization
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z. Genomic Instability and Cancer: An Introduction. J. Mol. Cell Biol. 2011, 3, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Zeman, M.K.; Cimprich, K.A. Causes and Consequences of Replication Stress. Nat. Cell Biol. 2014, 16, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotsantis, P.; Petermann, E.; Boulton, S.J. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov. 2018, 8, 537–555. [Google Scholar] [CrossRef] [Green Version]
- Schmit, M.; Bielinsky, A.K. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int. J. Mol. Sci. 2021, 22, 911. [Google Scholar] [CrossRef]
- Blackford, A.N.; Stucki, M. How Cells Respond to DNA Breaks in Mitosis. Trends Biochem. Sci. 2020, 45, 321–331. [Google Scholar] [CrossRef]
- Yu, J.; Qin, B.; Lou, Z. Ubiquitin and Ubiquitin-like Molecules in DNA Double Strand Break Repair. Cell Biosci. 2020, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Zhang, Y.; Liu, P. Roles of Ubiquitination and SUMOylation in DNA Damage Response. Curr. Issues Mol. Biol. 2020, 35, 59–84. [Google Scholar] [CrossRef] [Green Version]
- Zalzman, M.; Meltzer, W.A.; Portney, B.A.; Brown, R.A.; Gupta, A. The Role of Ubiquitination and SUMOylation in Telomere Biology. Curr. Issues Mol. Biol. 2020, 35, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.D.; Ritterhoff, T.; Klevit, R.E.; Brzovic, P.S. E2 Enzymes: More than Just Middle Men. Cell Res. 2016, 26, 423–440. [Google Scholar] [CrossRef] [Green Version]
- Grou, C.P.; Pinto, M.P.; Mendes, A.V.; Domingues, P.; Azevedo, J.E. The de Novo Synthesis of Ubiquitin: Identification of Deubiquitinases Acting on Ubiquitin Precursors. Sci. Rep. 2015, 5, 12836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, N.S.; Vertegaal, A.C.O. A Chain of Events: Regulating Target Proteins by SUMO Polymers. Trends Biochem. Sci. 2021, 46, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Kotamarthi, H.C.; Sharma, R.; Koti Ainavarapu, S.R. Single-Molecule Studies on PolySUMO Proteins Reveal Their Mechanical Flexibility. Biophys. J. 2013, 104, 2273–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, V.G. Introduction to Sumoylation. In Advances in Experimental Medicine and Biology; Springer New York LLC: New York, NY, USA, 2017; Volume 963, pp. 1–12. [Google Scholar]
- Nie, M.; Boddy, M. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability. Biomolecules 2016, 6, 14. [Google Scholar] [CrossRef]
- Zheng, N.; Shabek, N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017, 86, 129–157. [Google Scholar] [CrossRef]
- Akutsu, M.; Dikic, I.; Bremm, A. Ubiquitin Chain Diversity at a Glance. J. Cell Sci. 2016, 129, 875–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Hsu, C.-T.; Ting, C.-Y.; Liu, L.F.; Hwang, J. Assembly of a Polymeric Chain of SUMO1 on Human Topoisomerase I in Vitro. J. Biol. Chem. 2006, 281, 8264–8274. [Google Scholar] [CrossRef] [Green Version]
- Bursomanno, S.; Beli, P.; Khan, A.M.; Minocherhomji, S.; Wagner, S.A.; Bekker-Jensen, S.; Mailand, N.; Choudhary, C.; Hickson, I.D.; Liu, Y. Proteome-Wide Analysis of SUMO2 Targets in Response to Pathological DNA Replication Stress in Human Cells. DNA Repair 2015, 25, 84–96. [Google Scholar] [CrossRef]
- Xiao, Z.; Chang, J.-G.; Hendriks, I.A.; Sigurðsson, J.O.; Olsen, J.V.; Vertegaal, A.C.O. System-Wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability. Mol. Cell. Proteom. 2015, 14, 1419–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munk, S.; Sigurðsson, J.O.; Xiao, Z.; Batth, T.S.; Franciosa, G.; von Stechow, L.; Lopez-Contreras, A.J.; Vertegaal, A.C.O.; Olsen, J.V. Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress. Cell Rep. 2017, 21, 546–558. [Google Scholar] [CrossRef] [Green Version]
- Thu, Y.M.; Van Riper, S.K.; Higgins, L.; Zhang, T.; Becker, J.R.; Markowski, T.W.; Nguyen, H.D.; Griffin, T.J.; Bielinsky, A.K. Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression. Cell Rep. 2016, 15, 1254–1265. [Google Scholar] [CrossRef] [Green Version]
- Mullen, J.R.; Kaliraman, V.; Ibrahim, S.S.; Brill, S.J. Requirement for Three Novel Protein Complexes in the Absence of the Sgs1 DNA Helicase in Saccharomyces Cerevisiae. Genetics 2001, 157, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jones, G.M.; Prelich, G. Genetic Analysis Connects SLX5 and SLX8 to the SUMO Pathway in Saccharomyces Cerevisiae. Genetics 2006, 172, 1499–1509. [Google Scholar] [CrossRef] [Green Version]
- Kosoy, A.; Calonge, T.M.; Outwin, E.A.; O’Connell, M.J. Fission Yeast Rnf4 Homologs Are Required for DNA Repair. J. Biol. Chem. 2007, 282, 20388–20394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, H.D. Mutual Interactions between the SUMO and Ubiquitin Systems: A Plea of No Contest. Trends Cell Biol. 2005, 15, 525–532. [Google Scholar] [CrossRef]
- Perry, J.J.P.; Tainer, J.A.; Boddy, M.N. A SIM-Ultaneous Role for SUMO and Ubiquitin. Trends Biochem. Sci. 2008, 33, 201–208. [Google Scholar] [CrossRef]
- Hickey, C.M.; Wilson, N.R.; Hochstrasser, M. Function and Regulation of SUMO Proteases. Nat. Rev. Mol. Cell Biol. 2012, 13, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Uzunova, K.; Göttsche, K.; Miteva, M.; Weisshaar, S.R.; Glanemann, C.; Schnellhardt, M.; Niessen, M.; Scheel, H.; Hofmann, K.; Johnson, E.S.; et al. Ubiquitin-Dependent Proteolytic Control of SUMO Conjugates. J. Biol. Chem. 2007, 282, 34167–34175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Kerscher, O.; Kroetz, M.B.; McConchie, H.F.; Sung, P.; Hochstrasser, M. The Yeast Hex3·Slx8 Heterodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation. J. Biol. Chem. 2007, 282, 34176–34184. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.L.; Ulrich, H.D. A SUMO-Interacting Motif Activates Budding Yeast Ubiquitin Ligase Rad18 towards SUMO-Modified PCNA. Nucleic Acids Res. 2012, 40, 11380–11388. [Google Scholar] [CrossRef]
- Abed, M.; Barry, K.C.; Kenyagin, D.; Koltun, B.; Phippen, T.M.; Delrow, J.J.; Parkhurst, S.M.; Orian, A. Degringolade, a SUMO-Targeted Ubiquitin Ligase, Inhibits Hairy/Groucho-Mediated Repression. EMBO J. 2011, 30, 1289–1301. [Google Scholar] [CrossRef] [Green Version]
- Barry, K.C.; Abed, M.; Kenyagin, D.; Werwie, T.R.; Boico, O.; Orian, A.; Parkhurst, S.M. The Drosophila STUbL Protein Degringolade Limits HES Functions during Embryogenesis. Development 2011, 138, 1759–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Hunter, T. Poly-Small Ubiquitin-like Modifier (PolySUMO)-Binding Proteins Identified through a String Search. J. Biol. Chem. 2012, 287, 42071–42083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ii, T.; Mullen, J.R.; Slagle, C.E.; Brill, S.J. Stimulation of in Vitro Sumoylation by Slx5–Slx8: Evidence for a Functional Interaction with the SUMO Pathway. DNA Repair 2007, 6, 1679–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ii, T.; Fung, J.; Mullen, J.R.; Brill, S.J. The Yeast Slx5-Slx8 DNA Integrity Complex Displays Ubiquitin Ligase Activity. Cell Cycle 2007, 6, 2800–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, J.R.; Brill, S.J. Activation of the Slx5-Slx8 Ubiquitin Ligase by Poly-Small Ubiquitin-like Modifier Conjugates. J. Biol. Chem. 2008, 283, 19912–19921. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.Y.; Li, X.; Kong, X.Q.; Luo, C.; Chang, C.C.; Chung, Y.; Shih, H.M.; Li, K.K.; Ann, D.K. An Arginine-Rich Motif of Ring Finger Protein 4 (RNF4) Oversees the Recruitment and Degradation of the Phosphorylated and SUMOylated Krüppel-Associated Box Domain-Associated Protein 1 (KAP1)/TRIM28 Protein during Genotoxic Stress. J. Biol. Chem. 2014, 289, 20757–20772. [Google Scholar] [CrossRef] [Green Version]
- Groocock, L.M.; Nie, M.; Prudden, J.; Moiani, D.; Wang, T.; Cheltsov, A.; Rambo, R.P.; Arvai, A.S.; Hitomi, C.; Tainer, J.A.; et al. RNF4 Interacts with Both SUMO and Nucleosomes to Promote the DNA Damage Response. EMBO Rep. 2014, 15, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Liu, Y.; Hunter, T. Multiple Arkadia/RNF111 Structures Coordinate Its Polycomb Body Association and Transcriptional Control. Mol. Cell. Biol. 2014, 34, 2981–2995. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Gao, X.; Jin, C.; Zhu, M.; Wang, X.; Shaw, A.; Wen, L.; Yao, X.; Xue, Y. Systematic Study of Protein Sumoylation: Development of a Site-Specific Predictor of SUMOsp 2.0. Proteomics 2009, 9, 3409–3412. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, Y.; Zheng, Y.; Jiang, S.; Liu, W.; Mu, W.; Liu, Z.; Zhao, Y.; Xue, Y.; Ren, J. GPS-SUMO: A Tool for the Prediction of Sumoylation Sites and SUMO-Interaction Motifs. Nucleic Acids Res. 2014, 42, W325–W330. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Plechanovová, A.; Jaffray, E.G.; Tatham, M.H.; Naismith, J.H.; Hay, R.T. Structure of a RING E3 Ligase and Ubiquitin-Loaded E2 Primed for Catalysis. Nature 2012, 489, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.D.; Mace, P.D.; Day, C.L. Secondary Ubiquitin-RING Docking Enhances Arkadia and Ark2C E3 Ligase Activity. Nat. Struct. Mol. Biol. 2016, 23, 45–52. [Google Scholar] [CrossRef]
- Branigan, E.; Plechanovová, A.; Jaffray, E.G.; Naismith, J.H.; Hay, R.T. Structural Basis for the RING-Catalyzed Synthesis of K63-Linked Ubiquitin Chains. Nat. Struct. Mol. Biol. 2015, 22, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Plechanovová, A.; Simpson, P.; Marchant, J.; Leidecker, O.; Kraatz, S.; Hay, R.T.; Matthews, S.J. Structural Insight into SUMO Chain Recognition and Manipulation by the Ubiquitin Ligase RNF4. Nat. Commun. 2014, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kötter, A.; Mootz, H.D.; Heuer, A. Insights into the Microscopic Structure of RNF4-SIM-SUMO Complexes from MD Simulations. Biophys. J. 2020, 119, 1558–1567. [Google Scholar] [CrossRef]
- Murphy, P.; Xu, Y.; Rouse, S.L.; Jaffray, E.G.; Plechanovová, A.; Matthews, S.J.; Carlos Penedo, J.; Hay, R.T. Functional 3D Architecture in an Intrinsically Disordered E3 Ligase Domain Facilitates Ubiquitin Transfer. Nat. Commun. 2020, 11, 3807. [Google Scholar] [CrossRef]
- Cappadocia, L.; Lima, C.D. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Chem. Rev. 2018, 118, 889–918. [Google Scholar] [CrossRef]
- Kung, C.C.H.; Naik, M.T.; Wang, S.H.; Shih, H.M.; Chang, C.C.; Lin, L.Y.; Chen, C.L.; Ma, C.; Chang, C.F.; Huang, T.H. Structural Analysis of Poly-SUMO Chain Recognition by the RNF4-SIMs Domain. Biochem. J. 2014, 462, 53–65. [Google Scholar] [CrossRef]
- Song, J.; Durrin, L.K.; Wilkinson, T.A.; Krontiris, T.G.; Chen, Y. Identification of a SUMO-Binding Motif That Recognizes SUMO-Modified Proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 14373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Zhang, Z.; Hu, W.; Chen, Y. Small Ubiquitin-like Modifier (SUMO) Recognition of a SUMO Binding Motif: A Reversal of the Bound Orientation. J. Biol. Chem. 2005, 280, 40122–40129. [Google Scholar] [CrossRef] [Green Version]
- Keusekotten, K.; Bade, V.N.; Meyer-Teschendorf, K.; Sriramachandran, A.M.; Fischer-Schrader, K.; Krause, A.; Horst, C.; Schwarz, G.; Hofmann, K.; Dohmen, R.J.; et al. Multivalent Interactions of the SUMO-Interaction Motifs in RING Finger Protein 4 Determine the Specificity for Chains of the SUMO. Biochem. J. 2014, 457, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Martinez, E.; Guo, B.; Sharrocks, A.D. RNF4 Interacts with MultiSUMOylated ETV4. Wellcome Open Res. 2017, 1, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Fernandez, A.; Plechanovová, A.; Hattersley, N.; Jaffray, E.; Tatham, M.H.; Hay, R.T. SUMO Chain-Induced Dimerization Activates RNF4. Mol. Cell 2014, 53, 880–892. [Google Scholar] [CrossRef] [Green Version]
- Sriramachandran, A.M.; Meyer-Teschendorf, K.; Pabst, S.; Ulrich, H.D.; Gehring, N.H.; Hofmann, K.; Praefcke, G.J.K.; Dohmen, R.J. Arkadia/RNF111 Is a SUMO-Targeted Ubiquitin Ligase with Preference for Substrates Marked with SUMO1-Capped SUMO2/3 Chain. Nat. Commun. 2019, 10, 3678. [Google Scholar] [CrossRef]
- Pilla, E.; Möller, U.; Sauer, G.; Mattiroli, F.; Melchior, F.; Geiss-Friedlander, R. A Novel SUMO1-Specific Interacting Motif in Dipeptidyl Peptidase 9 (DPP9) That Is Important for Enzymatic Regulation. J. Biol. Chem. 2012, 287, 44320–44329. [Google Scholar] [CrossRef] [Green Version]
- Tatham, M.H.; Jaffray, E.; Vaughan, O.A.; Desterro, J.M.P.; Botting, C.H.; Naismith, J.H.; Hay, R.T. Polymeric Chains of SUMO-2 and SUMO-3 Are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 2001, 276, 35368–35374. [Google Scholar] [CrossRef] [Green Version]
- Matic, I.; van Hagen, M.; Schimmel, J.; Macek, B.; Ogg, S.C.; Tatham, M.H.; Hay, R.T.; Lamond, A.I.; Mann, M.; Vertegaal, A.C.O. In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy. Mol. Cell. Proteom. 2008, 7, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Berndsen, C.E.; Wolberger, C. New Insights into Ubiquitin E3 Ligase Mechanism. Nat. Struct. Mol. Biol. 2014, 21, 301–307. [Google Scholar] [CrossRef]
- Garcia-Barcena, C.; Osinalde, N.; Ramirez, J.; Mayor, U. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Front. cell Dev. Biol. 2020, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, C.W.; Sun, H.; Hunter, T.; Day, C.L. RING Domain Dimerization Is Essential for RNF4 Function. Biochem. J. 2010, 431, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plechanovová, A.; Jaffray, E.G.; McMahon, S.A.; Johnson, K.A.; Navrátilová, I.; Naismith, J.H.; Hay, R.T. Mechanism of Ubiquitylation by Dimeric RING Ligase RNF4. Nat. Struct. Mol. Biol. 2011, 18, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Pruneda, J.N.; Stoll, K.E.; Bolton, L.J.; Brzovic, P.S.; Klevit, R.E. Ubiquitin in Motion: Structural Studies of the Ubiquitin-Conjugating Enzyme∼Ubiquitin Conjugate. Biochemistry 2011, 50, 1624–1633. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Prelich, G. Quality Control of a Transcriptional Regulator by SUMO-Targeted Degradation. Mol. Cell. Biol. 2009, 29, 1694–1706. [Google Scholar] [CrossRef] [Green Version]
- Hickey, C.M.; Hochstrasser, M. STUbL-Mediated Degradation of the Transcription Factor MATα2 Requires Degradation Elements That Coincide with Corepressor Binding Sites. Mol. Biol. Cell 2015, 26, 3401–3412. [Google Scholar] [CrossRef]
- Fryrear, K.A.; Guo, X.; Kerscher, O.; Semmes, O.J. The Sumo-Targeted Ubiquitin Ligase RNF4 Regulates the Localization and Function of the HTLV-1 Oncoprotein Tax. Blood 2012, 119, 1173–1181. [Google Scholar] [CrossRef]
- Häkli, M.; Lorick, K.L.; Weissman, A.M.; Jänne, O.A.; Palvimo, J.J. Transcriptional Coregulator SNURF (RNF4) Possesses Ubiquitin E3 Ligase Activity. FEBS Lett. 2004, 560, 56–62. [Google Scholar] [CrossRef] [Green Version]
- DiBello, A.; Datta, A.B.; Zhang, X.; Wolberger, C. Role of E2-RING Interactions in Governing RNF4-Mediated Substrate Ubiquitination. J. Mol. Biol. 2016, 428, 4639–4650. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Y.; Qin, G.; Luo, C.; Jiang, H.; Yu, K.; Chen, G. Exploring the RING-Catalyzed Ubiquitin Transfer Mechanism by MD and QM/MM Calculations. PLoS ONE 2014, 9, e101663. [Google Scholar] [CrossRef] [Green Version]
- Tatham, M.H.; Plechanovová, A.; Jaffray, E.G.; Salmen, H.; Hay, R.T. Ube2W Conjugates Ubiquitin to α-Amino Groups of Protein N-Termini. Biochem. J. 2013, 453, 137–145. [Google Scholar] [CrossRef]
- Maure, J.-F.; Moser, S.C.; Jaffray, E.G.; Alpi, A.F.; Hay, R.T. Loss of Ubiquitin E2 Ube2w Rescues Hypersensitivity of Rnf4 Mutant Cells to DNA Damage. Sci. Rep. 2016, 6, 26178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulsen, S.L.; Hansen, R.K.; Wagner, S.A.; van Cuijk, L.; van Belle, G.J.; Streicher, W.; Wikström, M.; Choudhary, C.; Houtsmuller, A.B.; Marteijn, J.A.; et al. RNF111/Arkadia Is a SUMO-Targeted Ubiquitin Ligase That Facilitates the DNA Damage Response. J. Cell Biol. 2013, 201, 787–807. [Google Scholar] [CrossRef] [PubMed]
- Chasapis, C.T.; Kandias, N.G.; Episkopou, V.; Bentrop, D.; Spyroulias, G.A. NMR-Based Insights into the Conformational and Interaction Properties of Arkadia RING-H2 E3 Ub Ligase. Proteins 2012, 80, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Birkou, M.; Chasapis, C.T.; Marousis, K.D.; Loutsidou, A.K.; Bentrop, D.; Lelli, M.; Herrmann, T.; Carthy, J.M.; Episkopou, V.; Spyroulias, G.A. A Residue Specific Insight into the Arkadia E3 Ubiquitin Ligase Activity and Conformational Plasticity. J. Mol. Biol. 2017, 429, 2373–2386. [Google Scholar] [CrossRef]
- Ma, T.; Chen, Y.; Zhang, F.; Yang, C.Y.; Wang, S.; Yu, X. RNF111-Dependent Neddylation Activates DNA Damage-Induced Ubiquitination. Mol. Cell 2013, 49, 897–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, S.; Behera, A.P.; Borar, P.; Banka, P.A.; Datta, A.B. Designing Active RNF4 Monomers by Introducing a Tryptophan: Avidity towards E2∼Ub Conjugates Dictates the Activity of Ubiquitin RING E3 Ligases. Biochem. J. 2019, 476, 1465–1482. [Google Scholar] [CrossRef]
- Tatham, M.H.; Geoffroy, M.C.; Shen, L.; Plechanovova, A.; Hattersley, N.; Jaffray, E.G.; Palvimo, J.J.; Hay, R.T. RNF4 Is a Poly-SUMO-Specific E3 Ubiquitin Ligase Required for Arsenic-Induced PML Degradation. Nat. Cell Biol. 2008, 10, 538–546. [Google Scholar] [CrossRef]
- Yang, L.; Mullen, J.R.; Brill, S.J. Purification of the Yeast Slx5–Slx8 Protein Complex and Characterization of Its DNA-Binding Activity. Nucleic Acids Res. 2006, 34, 5541–5551. [Google Scholar] [CrossRef]
- Häkli, M.; Karvonen, U.; Jänne, O.A.; Palvimo, J.J. The RING Finger Protein SNURF Is a Bifunctional Protein Possessing DNA Binding Activity. J. Biol. Chem. 2001, 276, 23653–23660. [Google Scholar] [CrossRef] [Green Version]
- Salichs, E.; Ledda, A.; Mularoni, L.; Albà, M.M.; de la Luna, S. Genome-Wide Analysis of Histidine Repeats Reveals Their Role in the Localization of Human Proteins to the Nuclear Speckles Compartment. PLoS Genet. 2009, 5, e1000397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galganski, L.; Urbanek, M.O.; Krzyzosiak, W.J. Nuclear Speckles: Molecular Organization, Biological Function and Role in Disease. Nucleic Acids Res. 2017, 45, 10350–10368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, M.R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.R.; Taylor, M.R.G.; Boulton, S.J. Playing the End Game: DNA Double-Strand Break Repair Pathway Choice. Mol. Cell 2012, 47, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, T.; Baer, R.; Gautier, J. DNA Double-Strand Break Repair Pathway Choice and Cancer. DNA Repair 2014, 19, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Her, J.; Bunting, S.F. How Cells Ensure Correct Repair of DNA Double-Strand Breaks. J. Biol. Chem. 2018, 293, 10502–10511. [Google Scholar] [CrossRef] [Green Version]
- Symington, L.S.; Gautier, J. Double-Strand Break End Resection and Repair Pathway Choice. Annu. Rev. Genet. 2011, 45, 247–271. [Google Scholar] [CrossRef]
- Jasin, M.; Rothstein, R. Repair of Strand Breaks by Homologous Recombination. Cold Spring Harb. Perspect. Biol. 2013, 5, a012740. [Google Scholar] [CrossRef]
- Frank-Vaillant, M.; Marcand, S. Transient Stability of DNA Ends Allows Nonhomologous End Joining to Precede Homologous Recombination. Mol. Cell 2002, 10, 1189–1199. [Google Scholar] [CrossRef]
- Rothkamm, K.; Krüger, I.; Thompson, L.H.; Löbrich, M. Pathways of DNA Double-Strand Break Repair during the Mammalian Cell Cycle. Mol. Cell. Biol. 2003, 23, 5706–5715. [Google Scholar] [CrossRef] [Green Version]
- Aylon, Y.; Liefshitz, B.; Kupiec, M. The CDK Regulates Repair of Double-Strand Breaks by Homologous Recombination during the Cell Cycle. EMBO J. 2004, 23, 4868–4875. [Google Scholar] [CrossRef] [Green Version]
- Shibata, A.; Conrad, S.; Birraux, J.; Geuting, V.; Barton, O.; Ismail, A.; Kakarougkas, A.; Meek, K.; Taucher-Scholz, G.; Löbrich, M.; et al. Factors Determining DNA Double-Strand Break Repair Pathway Choice in G2 Phase. EMBO J. 2011, 30, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Pardo, B.; Marcand, S. Rap1 Prevents Telomere Fusions by Nonhomologous End Joining. EMBO J. 2005, 24, 3117–3127. [Google Scholar] [CrossRef] [Green Version]
- Lescasse, R.; Pobiega, S.; Callebaut, I.; Marcand, S. End-Joining Inhibition at Telomeres Requires the Translocase and PolySUMO-Dependent Ubiquitin Ligase Uls1. EMBO J. 2013, 32, 805–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcomini, I.; Shimada, K.; Delgoshaie, N.; Yamamoto, I.; Seeber, A.; Cheblal, A.; Horigome, C.; Naumann, U.; Gasser, S.M. Asymmetric Processing of DNA Ends at a Double-Strand Break Leads to Unconstrained Dynamics and Ectopic Translocation. Cell Rep. 2018, 24, 2614–2628.e4. [Google Scholar] [CrossRef] [Green Version]
- Su, X.A.; Dion, V.; Gasser, S.M.; Freudenreich, C.H. Regulation of Recombination at Yeast Nuclear Pores Controls Repair and Triplet Repeat Stability. Genes Dev. 2015, 29, 1006–1017. [Google Scholar] [CrossRef] [Green Version]
- Galanty, Y.; Belotserkovskaya, R.; Coates, J.; Jackson, S.P. RNF4, a SUMO-Targeted Ubiquitin E3 Ligase, Promotes DNA Double-Strand Break Repair. Genes Dev. 2012, 26, 1179–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, K.; Deng, M.; Li, Y.; Wu, C.; Xu, Z.; Yuan, J.; Lou, Z. CDK-Mediated RNF4 Phosphorylation Regulates Homologous Recombination in S-Phase. Nucleic Acids Res. 2015, 43, 5465–5475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, K.; Zhang, H.; Wang, L.; Yuan, J.; Lou, Z. Sumoylation of MDC1 Is Important for Proper DNA Damage Response. EMBO J. 2012, 31, 3008–3019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, R.; Kumar, R.; Clermont, F.; Helfricht, A.; Kalev, P.; Sotiropoulou, P.; Hendriks, I.A.; Radaelli, E.; Hochepied, T.; Blanpain, C.; et al. RNF4 Is Required for DNA Double-Strand Break Repair in Vivo. Cell Death Differ. 2013, 20, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-Y.; Li, X.; Stark, J.M.; Shih, H.-M.; Ann, D.K. RNF4 Regulates DNA Double-Strand Break Repair in a Cell Cycle-Dependent Manner. Cell Cycle 2016, 15, 787–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvin, A.J.; Walker, A.K.; Densham, R.M.; Chauhan, A.S.; Stone, H.R.; Mackay, H.L.; Jamshad, M.; Starowicz, K.; Daza-Martin, M.; Ronson, G.E.; et al. The DeSUMOylase SENP2 Coordinates Homologous Recombination and Nonhomologous End Joining by Independent Mechanisms. Genes Dev. 2019, 33, 333–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, A.; Luijsterburg, M.S.; Acs, K.; Wiegant, W.W.; Helfricht, A.; Herzog, L.K.; Minoia, M.; Böttcher, C.; Salomons, F.A.; Attikum, H.; et al. Ataxin-3 Consolidates the MDC1-dependent DNA Double-strand Break Response by Counteracting the SUMO-targeted Ubiquitin Ligase RNF4. EMBO J. 2017, 36, 1066–1083. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Seifert, A.; Chua, J.S.; Maure, J.-F.; Golebiowski, F.; Hay, R.T. SUMO-Targeted Ubiquitin E3 Ligase RNF4 Is Required for the Response of Human Cells to DNA Damage. Genes Dev. 2012, 26, 1196–1208. [Google Scholar] [CrossRef] [Green Version]
- Jimeno, S.; Fernández-Ávila, M.J.; Cruz-García, A.; Cepeda-García, C.; Gómez-Cabello, D.; Huertas, P. Neddylation Inhibits CtIP-Mediated Resection and Regulates DNA Double Strand Break Repair Pathway Choice. Nucleic Acids Res. 2015, 43, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Steinacher, R.; Osman, F.; Lorenz, A.; Bryer, C.; Whitby, M.C. Slx8 Removes Pli1-Dependent Protein-SUMO Conjugates Including SUMOylated Topoisomerase I to Promote Genome Stability. PLoS ONE 2013, 8, e71960. [Google Scholar] [CrossRef] [Green Version]
- Prudden, J.; Pebernard, S.; Raffa, G.; Slavin, D.A.; Perry, J.J.P.; Tainer, J.A.; McGowan, C.H.; Boddy, M.N. SUMO-Targeted Ubiquitin Ligases in Genome Stability. EMBO J. 2007, 26, 4089–4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, M.; Boddy, M.N. Pli1 (PIAS1) SUMO Ligase Protected by the Nuclear Pore-Associated SUMO Protease Ulp1SENP1/2. J. Biol. Chem. 2015, 290, 22678–22685. [Google Scholar] [CrossRef] [Green Version]
- Chi, P.; Kwon, Y.; Visnapuu, M.-L.; Lam, I.; Santa Maria, S.R.; Zheng, X.; Epshtein, A.; Greene, E.C.; Sung, P.; Klein, H.L. Analyses of the Yeast Rad51 Recombinase A265V Mutant Reveal Different in Vivo Roles of Swi2-like Factors. Nucleic Acids Res. 2011, 39, 6511–6522. [Google Scholar] [CrossRef] [Green Version]
- Kramarz, K.; Mucha, S.; Litwin, I.; Barg-Wojas, A.; Wysocki, R.; Dziadkowiec, D. DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in Saccharomyces Cerevisiae. Genetics 2017, 206, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, D.; Orihara, Y.; Kitagawa, S.; Kusakabe, M.; Shintani, T.; Oma, Y.; Harata, M. Quantitative Regulation of Histone Variant H2A.Z during Cell Cycle by Ubiquitin Proteasome System and SUMO-Targeted Ubiquitin Ligases. Biosci. Biotechnol. Biochem. 2017, 81, 1557–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangasamy, D.; Greaves, I.; Tremethick, D.J. RNA Interference Demonstrates a Novel Role for H2A.Z in Chromosome Segregation. Nat. Struct. Mol. Biol. 2004, 11, 650–655. [Google Scholar] [CrossRef]
- Talhaoui, I.; Bernal, M.; Mullen, J.R.; Dorison, H.; Palancade, B.; Brill, S.J.; Mazón, G. Slx5-Slx8 Ubiquitin Ligase Targets Active Pools of the Yen1 Nuclease to Limit Crossover Formation. Nat. Commun. 2018, 9, 5016. [Google Scholar] [CrossRef] [PubMed]
- Burgess, R.C.; Rahman, S.; Lisby, M.; Rothstein, R.; Zhao, X. The Slx5-Slx8 Complex Affects Sumoylation of DNA Repair Proteins and Negatively Regulates Recombination. Mol. Cell. Biol. 2007, 27, 6153–6162. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Miller Jenkins, L.M.; Su, Y.P.; Nitiss, K.C.; Nitiss, J.L.; Pommier, Y. A Conserved SUMO Pathway Repairs Topoisomerase DNA-Protein Cross-Links by Engaging Ubiquitin-Mediated Proteasomal Degradation. Sci. Adv. 2020, 6, eaba6290. [Google Scholar] [CrossRef] [PubMed]
- Psakhye, I.; Castellucci, F.; Branzei, D. SUMO-Chain-Regulated Proteasomal Degradation Timing Exemplified in DNA Replication Initiation. Mol. Cell 2019, 76, 632–645.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ambrosio, L.M.; Lavoie, B.D. Pds5 Prevents the PolySUMO-Dependent Separation of Sister Chromatids. Curr. Biol. 2014, 24, 361–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkuni, K.; Takahashi, Y.; Fulp, A.; Lawrimore, J.; Au, W.-C.; Pasupala, N.; Levy-Myers, R.; Warren, J.; Strunnikov, A.; Baker, R.E.; et al. SUMO-Targeted Ubiquitin Ligase (STUbL) Slx5 Regulates Proteolysis of Centromeric Histone H3 Variant Cse4 and Prevents Its Mislocalization to Euchromatin. Mol. Biol. Cell 2016, 27, 1500–1510. [Google Scholar] [CrossRef]
- Cheng, H.; Bao, X.; Gan, X.; Luo, S.; Rao, H. Multiple E3s Promote the Degradation of Histone H3 Variant Cse4. Sci. Rep. 2017, 7, 8565. [Google Scholar] [CrossRef] [Green Version]
- Ohkuni, K.; Levy-Myers, R.; Warren, J.; Au, W.C.; Takahashi, Y.; Baker, R.E.; Basrai, M.A. N-Terminal Sumoylation of Centromeric Histone H3 Variant Cse4 Regulates Its Proteolysis to Prevent Mislocalization to Non-Centromeric Chromatin. G3 Genes Genomes Genet. 2018, 8, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Ohkuni, K.; Suva, E.; Au, W.C.; Walker, R.L.; Levy-Myers, R.; Meltzer, P.S.; Baker, R.E.; Basrai, M.A. Deposition of Centromeric Histone H3 Variant CENP-A/Cse4 into Chromatin Is Facilitated by Its C-Terminal Sumoylation. Genetics 2020, 214, 839–854. [Google Scholar] [CrossRef] [PubMed]
- Waizenegger, A.; Urulangodi, M.; Lehmann, C.P.; Reyes, T.A.C.; Saugar, I.; Tercero, J.A.; Szakal, B.; Branzei, D. Mus81-Mms4 Endonuclease Is an Esc2-STUbL-Cullin8 Mitotic Substrate Impacting on Genome Integrity. Nat. Commun. 2020, 11, 5746. [Google Scholar] [CrossRef]
- Nixon, C.E.; Wilcox, A.J.; Laney, J.D. Degradation of the Saccharomyces Cerevisiae Mating-Type Regulator A1: Genetic Dissection of Cis -Determinants and Trans -Acting Pathways. Genetics 2010, 185, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Hickey, C.M.; Xie, Y.; Hochstrasser, M. DNA Binding by the MATα2 Transcription Factor Controls Its Access to Alternative Ubiquitin-Modification Pathways. Mol. Biol. Cell 2018, 29, 542–556. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Rubenstein, E.M.M.; Matt, T.; Hochstrasser, M. SUMO-Independent in Vivo Activity of a SUMO-Targeted Ubiquitin Ligase toward a Short-Lived Transcription Factor. Genes Dev. 2010, 24, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Hickey, C.M.; Breckel, C.; Zhang, M.; Theune, W.C.; Hochstrasser, M. Protein Quality Control Degron-Containing Substrates Are Differentially Targeted in the Cytoplasm and Nucleus by Ubiquitin Ligases. Genetics 2021, 217, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Singh, N.; Carlson, C.R.; Albuquerque, C.P.; Corbett, K.D.; Zhou, H. Recruitment of a SUMO Isopeptidase to RDNA Stabilizes Silencing Complexes by Opposing SUMO Targeted Ubiquitin Ligase Activity. Genes Dev. 2017, 31, 802–815. [Google Scholar] [CrossRef]
- Abraham, N.M.; Ramalingam, K.; Murthy, S.; Mishra, K. Siz2 Prevents Ribosomal DNA Recombination by Modulating Levels of Tof2 in Saccharomyces Cerevisiae. mSphere 2019, 4, e00713-719. [Google Scholar] [CrossRef] [Green Version]
- Westerbeck, J.W.; Pasupala, N.; Guillotte, M.; Szymanski, E.; Matson, B.C.; Esteban, C.; Kerscher, O. A SUMO-Targeted Ubiquitin Ligase Is Involved in the Degradation of the Nuclear Pool of the SUMO E3 Ligase Siz1. Mol. Biol. Cell 2014, 25, 1–16. [Google Scholar] [CrossRef]
- Han, J.; Wan, L.; Jiang, G.; Cao, L.; Xia, F.; Tian, T.; Zhu, X.; Wu, M.; Huen, M.S.Y.; Wang, Y.; et al. ATM Controls the Extent of DNA End Resection by Eliciting Sequential Posttranslational Modifications of CtIP. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
- Her, J.; Jeong, Y.Y.; Chung, I.K. PIAS1-Mediated Sumoylation Promotes STUbL-Dependent Proteasomal Degradation of the Human Telomeric Protein TRF2. FEBS Lett. 2015, 589, 3277–3286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; González-Prieto, R.; Xiao, Z.; Verlaan-De Vries, M.; Vertegaal, A.C.O. The STUbL RNF4 Regulates Protein Group SUMOylation by Targeting the SUMO Conjugation Machinery. Nat. Commun. 2017, 8, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs-Seymour, I.; Oka, Y.; Rajendra, E.; Weinert, B.T.; Passmore, L.A.; Patel, K.J.; Olsen, J.V.; Choudhary, C.; Bekker-Jensen, S.; Mailand, N. Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage. Mol. Cell 2015, 57, 150–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Kim, H.; Moreau, L.A.; Puhalla, S.; Garber, J.; Al Abo, M.; Takeda, S.; D’Andrea, A.D. RNF4-Mediated Polyubiquitination Regulates the Fanconi Anemia/BRCA Pathway. J. Clin. Investig. 2015, 125, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, D.; Arnaoutov, A.; Dasso, M. The SUMO Protease SENP6 Is Essential for Inner Kinetochore Assembly. J. Cell Biol. 2010, 188, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Cuijpers, S.A.G.; Willemstein, E.; Vertegaal, A.C.O. Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-Modified Target Proteins. Mol. Cell. Proteom. 2017, 16, 2281–2295. [Google Scholar] [CrossRef] [Green Version]
- Lallemand-Breitenbach, V.; Jeanne, M.; Benhenda, S.; Nasr, R.; Lei, M.; Peres, L.; Zhou, J.; Raught, B.; de Thé, H.; Zhu, J.; et al. Arsenic Degrades PML or PML–RARα through a SUMO-Triggered RNF4/Ubiquitin-Mediated Pathway. Nat. Cell Biol. 2008, 10, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Ferhi, O.; Jeanne, M.; Benhenda, S.; Berthier, C.; Jollivet, F.; Niwa-Kawakita, M.; Faklaris, O.; Setterblad, N.; de Thé, H.; et al. Oxidative Stress–Induced Assembly of PML Nuclear Bodies Controls Sumoylation of Partner Proteins. J. Cell Biol. 2014, 204, 931–945. [Google Scholar] [CrossRef] [Green Version]
- González-Prieto, R.; Cuijpers, S.A.; Kumar, R.; Hendriks, I.A.; Vertegaal, A.C. C-Myc Is Targeted to the Proteasome for Degradation in a SUMOylation-Dependent Manner, Regulated by PIAS1, SENP7 and RNF4. Cell Cycle 2015, 14, 1859–1872. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Sang, J.; Ren, Y.; Liu, K.; Liu, X.; Zhang, J.; Wang, H.; Wang, J.; Orian, A.; Yang, J.; et al. SENP3 Regulates the Global Protein Turnover and the Sp1 Level via Antagonizing SUMO2/3-Targeted Ubiquitination and Degradation. Protein Cell 2016, 7, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.; Schwamborn, K.; Schreiber, V.; Werner, A.; Guillier, C.; Zhang, X.-D.; Bischof, O.; Seeler, J.-S.; Dejean, A. PARP-1 Transcriptional Activity Is Regulated by Sumoylation upon Heat Shock. EMBO J. 2009, 28, 3534–3548. [Google Scholar] [CrossRef] [PubMed]
- Van Hagen, M.; Overmeer, R.M.; Abolvardi, S.S.; Vertegaal, A.C.O. RNF4 and VHL Regulate the Proteasomal Degradation of SUMO-Conjugated Hypoxia-Inducible Factor-2α. Nucleic Acids Res. 2010, 38, 1922–1931. [Google Scholar] [CrossRef] [Green Version]
- Sallais, J.; Alahari, S.; Tagliaferro, A.; Bhattacharjee, J.; Post, M.; Caniggia, I. Factor Inhibiting HIF1-A Novel Target of SUMOylation in the Human Placenta. Oncotarget 2017, 8, 114002–114018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malloy, M.T.; McIntosh, D.J.; Walters, T.S.; Flores, A.; Goodwin, J.S.; Arinze, I.J. Trafficking of the Transcription Factor Nrf2 to Promyelocytic Leukemia-Nuclear Bodies. J. Biol. Chem. 2013, 288, 14569–14583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Hannoun, Z.; Jaffray, E.; Medine, C.N.; Black, J.R.; Greenhough, S.; Zhu, L.; Ross, J.A.; Forbes, S.; Wilmut, I.; et al. SUMOylation of HNF4 Regulates Protein Stability and Hepatocyte Function. J. Cell Sci. 2012, 125, 3630–3635. [Google Scholar] [CrossRef] [Green Version]
- Nishida, T.; Yamada, Y. RNF4-Mediated SUMO-Targeted Ubiquitination Relieves PARIS/ZNF746-Mediated Transcriptional Repression. Biochem. Biophys. Res. Commun. 2020, 526, 110–116. [Google Scholar] [CrossRef]
- Wang, Y. RING Finger Protein 4 (RNF4) Derepresses Gene Expression from DNA Methylation. J. Biol. Chem. 2014, 289, 33808–33813. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, I.A.; Treffers, L.W.; Verlaan-de Vries, M.; Olsen, J.V.; Vertegaal, A.C.O. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep. 2015, 10, 1778–1791. [Google Scholar] [CrossRef] [Green Version]
- Bueno, M.T.D.; Richard, S. SUMOylation Negatively Modulates Target Gene Occupancy of the KDM5B, a Histone Lysine Demethylase. Epigenetics 2013, 8, 1162–1175. [Google Scholar] [CrossRef] [Green Version]
- Müncheberg, S.; Hay, R.T.; Ip, W.H.; Meyer, T.; Weiß, C.; Brenke, J.; Masser, S.; Hadian, K.; Dobner, T.; Schreiner, S. E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression. J. Virol. 2018, 92, 00164–00180. [Google Scholar] [CrossRef] [Green Version]
- Dassouki, Z.; Sahin, U.; El Hajj, H.; Jollivet, F.; Kfoury, Y.; Lallemand-Breitenbach, V.; Hermine, O.; de Thé, H.; Bazarbachi, A. ATL Response to Arsenic/Interferon Therapy Is Triggered by SUMO/PML/RNF4-Dependent Tax Degradation. Blood 2015, 125, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Tantai, J.; Pan, X.; Hu, D. RNF4-Mediated SUMOylation Is Essential for NDRG2 Suppression of Lung Adenocarcinoma. Oncotarget 2016, 7, 26837–26843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Costanzo, A.; Del Gaudio, N.; Conte, L.; Dell’Aversana, C.; Vermeulen, M.; De Thé, H.; Migliaccio, A.; Nebbioso, A.; Altucci, L. The HDAC Inhibitor SAHA Regulates CBX2 Stability via a SUMO-Triggered Ubiquitin-Mediated Pathway in Leukemia. Oncogene 2018, 37, 2559–2572. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.S.; Chatham, L.; Sleigh, R.; Meek, D.W. A Functional SUMO-Motif in the Active Site of PIM1 Promotes Its Degradation via RNF4, and Stimulates Protein Kinase Activity. Sci. Rep. 2017, 7, 3598. [Google Scholar] [CrossRef] [PubMed]
- Marinello, M.; Werner, A.; Giannone, M.; Tahiri, K.; Alves, S.; Tesson, C.; Den Dunnen, W.; Seeler, J.S.; Brice, A.; Sittler, A. SUMOylation by SUMO2 Is Implicated in the Degradation of Misfolded Ataxin-7 via RNF4 in SCA7 Models. DMM Dis. Model. Mech. 2019, 12, 036145. [Google Scholar] [CrossRef] [Green Version]
- Guérillon, C.; Smedegaard, S.; Hendriks, I.A.; Nielsen, M.L.; Mailand, N. Multisite SUMOylation Restrains DNA Polymerase η Interactions with DNA Damage Sites. J. Biol. Chem. 2020, 295, 8350–8362. [Google Scholar] [CrossRef]
- Erker, Y.; Neyret-Kahn, H.; Seeler, J.S.; Dejean, A.; Atfi, A.; Levy, L. Arkadia, a Novel SUMO-Targeted Ubiquitin Ligase Involved in PML Degradation. Mol. Cell. Biol. 2013, 33, 2163–2177. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, D.J.; Walters, T.S.; Arinze, I.J.; Davis, J. Arkadia (RING Finger Protein 111) Mediates Sumoylation-Dependent Stabilization of Nrf2 Through K48-Linked Ubiquitination. Cell. Physiol. Biochem. 2018, 46, 418–430. [Google Scholar] [CrossRef]
- Cunnington, R.H.; Nazari, M.; Dixon, I.M.C. C-Ski, Smurf2, and Arkadia as Regulators of TGF-β Signaling: New Targets for Managing Myofibroblast Function and Cardiac Fibrosis. Can. J. Physiol. Pharmacol. 2009, 87, 764–772. [Google Scholar] [CrossRef]
- Koinuma, D.; Shinozaki, M.; Komuro, A.; Goto, K.; Saitoh, M.; Hanyu, A.; Ebina, M.; Nukiwa, T.; Miyazawa, K.; Imamura, T.; et al. Arkadia Amplifies TGF-β Superfamily Signalling through Degradation of Smad7. EMBO J. 2003, 22, 6458–6470. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.Y.; Li, X.Z.; Peng, Y.M.; Liu, H.; Liu, Y.H. Arkadia Regulates TGF-β Signaling during Renal Tubular Epithelial to Mesenchymal Cell Transition. Kidney Int. 2008, 73, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuzawa, H.; Koinuma, D.; Maeda, S.; Yamamoto, K.; Miyazawa, K.; Imamura, T. Arkadia Represses the Expression of Myoblast Differentiation Markers through Degradation of Ski and the Ski-Bound Smad Complex in C2C12 Myoblasts. Bone 2009, 44, 53–60. [Google Scholar] [CrossRef]
- Nagano, Y.; Mavrakis, K.J.; Lee, K.L.; Fujii, T.; Koinuma, D.; Sase, H.; Yuki, K.; Isogaya, K.; Saitoh, M.; Imamura, T.; et al. Arkadia Induces Degradation of SnoN and C-Ski to Enhance Transforming Growth Factor-β Signaling. J. Biol. Chem. 2007, 282, 20492–20501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagano, Y.; Koinuma, D.; Miyazawa, K.; Miyazono, K. Context-Dependent Regulation of the Expression of c-Ski Protein by Arkadia in Human Cancer Cells. J. Biochem. 2010, 147, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Levy, L.; Howell, M.; Das, D.; Harkin, S.; Episkopou, V.; Hill, C.S. Arkadia Activates Smad3/Smad4-Dependent Transcription by Triggering Signal-Induced SnoN Degradation. Mol. Cell. Biol. 2007, 27, 6068–6083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizutani, A.; Koinuma, D.; Seimiya, H.; Miyazono, K. The Arkadia-ESRP2 Axis Suppresses Tumor Progression: Analyses in Clear-Cell Renal Cell Carcinoma. Oncogene 2016, 35, 3514–3523. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.L.; Chen, J.; Åström, S.U. Helicase/SUMO-Targeted Ubiquitin Ligase Uls1 Interacts with the Holliday Junction Resolvase Yen1. PLoS ONE 2019, 14, e0214102. [Google Scholar] [CrossRef]
- Cook, C.E.; Hochstrasser, M.; Kerscher, O. The SUMO-Targeted Ubiquitin Ligase Subunit Slx5 Resides in Nuclear Foci and at Sites of DNA Breaks. Cell Cycle 2009, 8, 1080–1089. [Google Scholar] [CrossRef] [Green Version]
- Böhm, S.; Mihalevic, M.J.; Casal, M.A.; Bernstein, K.A. Disruption of SUMO-Targeted Ubiquitin Ligases Slx5-Slx8/RNF4 Alters RecQ-like Helicase Sgs1/BLM Localization in Yeast and Human Cells. DNA Repair 2015, 26, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ryu, T.; Bonner, M.R.; Chiolo, I. Cervantes and Quijote Protect Heterochromatin from Aberrant Recombination and Lead the Way to the Nuclear Periphery. Nucleus 2016, 7, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Kramarz, K.; Schirmeisen, K.; Boucherit, V.; Ait Saada, A.; Lovo, C.; Palancade, B.; Freudenreich, C.; Lambert, S.A.E. The Nuclear Pore Primes Recombination-Dependent DNA Synthesis at Arrested Forks by Promoting SUMO Removal. Nat. Commun. 2020, 11, 5643. [Google Scholar] [CrossRef] [PubMed]
- Ait Saada, A.; Teixeira-Silva, A.; Iraqui, I.; Costes, A.; Hardy, J.; Paoletti, G.; Fréon, K.; Lambert, S.A.E. Unprotected Replication Forks Are Converted into Mitotic Sister Chromatid Bridges. Mol. Cell 2017, 66, 398–410.e4. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, A.; Herzog, L.K.; Luijsterburg, M.S.; Shah, R.G.; Rother, M.B.; Stoy, H.; Kühbacher, U.; van Attikum, H.; Shah, G.M.; Dantuma, N.P. Poly(ADP-Ribosyl)Ation Temporally Confines SUMO-Dependent Ataxin-3 Recruitment to Control DNA Double-Strand Break Repair. J. Cell Sci. 2021. [Google Scholar] [CrossRef]
- Guzzo, C.M.; Berndsen, C.E.; Zhu, J.; Gupta, V.; Datta, A.; Greenberg, R.A.; Wolberger, C.; Matunis, M.J. RNF4-Dependent Hybrid SUMO-Ubiquitin Chains Are Signals for RAP80 and Thereby Mediate the Recruitment of BRCA1 to Sites of DNA Damage. Sci. Signal. 2012, 5, ra88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heideker, J.; Prudden, J.; Perry, J.J.P.; Tainer, J.A.; Boddy, M.N. SUMO-Targeted Ubiquitin Ligase, Rad60, and Nse2 SUMO Ligase Suppress Spontaneous Top1-Mediated DNA Damage and Genome Instability. PLoS Genet. 2011, 7, e1001320. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.H.; Liu, Y.; Kong, D.C. Mechanism of Chromosomal DNA Replication Initiation and Replication Fork Stabilization in Eukaryotes. Sci. China Life Sci. 2014, 57, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Mazouzi, A.; Velimezi, G.; Loizou, J.I. DNA Replication Stress: Causes, Resolution and Disease. Exp. Cell Res. 2014, 329, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Kelly, T. Historical Perspective of Eukaryotic DNA Replication. In Advances in Experimental Medicine and Biology; Springer New York LLC: New York, NY, USA, 2017; Volume 1042, pp. 1–41. [Google Scholar]
- Marks, A.B.; Fu, H.; Aladjem, M.I. Regulation of Replication Origins. In Advances in Experimental Medicine and Biology; Springer New York LLC: New York, NY, USA, 2017; Volume 1042, pp. 43–59. [Google Scholar]
- Thu, Y.M.; Bielinsky, A.-K. Enigmatic Roles of Mcm10 in DNA Replication. Trends Biochem. Sci. 2013, 38, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Thu, Y.M.; Bielinsky, A.-K. MCM10: One Tool for All-Integrity, Maintenance and Damage Control. Semin. Cell Dev. Biol. 2014, 30, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lujan, S.A.; Williams, J.S.; Kunkel, T.A. DNA Polymerases Divide the Labor of Genome Replication. Trends Cell Biol. 2016, 26, 640–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccia, A.; Elledge, S.J. The DNA Damage Response: Making It Safe to Play with Knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitao, H.; Iimori, M.; Kataoka, Y.; Wakasa, T.; Tokunaga, E.; Saeki, H.; Oki, E.; Maehara, Y. DNA Replication Stress and Cancer Chemotherapy. Cancer Sci. 2018, 109, 264–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Leverson, J.D.; Hunter, T. Conserved Function of RNF4 Family Proteins in Eukaryotes: Targeting a Ubiquitin Ligase to SUMOylated Proteins. EMBO J. 2007, 26, 4102–4112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Diao, L.X.; Lu, S.; Wang, H.T.; Suo, F.; Dong, M.Q.; Du, L.L. SUMO-Targeted DNA Translocase Rrp2 Protects the Genome from Top2-Induced DNA Damage. Mol. Cell 2017, 66, 581–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cal-Bkowska, M.; Litwin, I.; Bocer, T.; Wysocki, R.; Dziadkowiec, D. The Swi2-Snf2-like Protein Uls1 Is Involved in Replication Stress Response. Nucleic Acids Res. 2011, 39, 8765–8777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramarz, K.; Litwin, I.; Cal-Bakowska, M.; Szakal, B.; Branzei, D.; Wysocki, R.; Dziadkowiec, D. Swi2/Snf2-like Protein Uls1 Functions in the Sgs1-Dependent Pathway of Maintenance of RDNA Stability and Alleviation of Replication Stress. DNA Repair 2014, 21, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Glineburg, M.R.; Johns, E.; Johnson, F.B. Deletion of ULS1 Confers Damage Tolerance in Sgs1 Mutants through a Top3-Dependent D-Loop Mediated Fork Restart Pathway. DNA Repair 2019, 78, 102–113. [Google Scholar] [CrossRef]
- Tan, W.; Wang, Z.; Prelich, G. Physical and Genetic Interactions between Uls1 and the Slx5-Slx8 SUMO-Targeted Ubiquitin Ligase. G3 Genes Genomes Genet. 2013, 3, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Parnas, O.; Amishay, R.; Liefshitz, B.; Zipin-Roitman, A.; Kupiec, M. Elg1, the Major Subunit of an Alternative RFC Complex, Interacts with SUMO-Processing Proteins. Cell Cycle 2011, 10, 2894–2903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Roberts, T.M.; Yang, J.; Desai, R.; Brown, G.W. Suppression of Genomic Instability by SLX5 and SLX8 in Saccharomyces Cerevisiae. DNA Repair 2006, 5, 336–346. [Google Scholar] [CrossRef]
- Blake, D.; Luke, B.; Kanellis, P.; Jorgensen, P.; Goh, T.; Penfold, S.; Breitkreutz, B.J.; Durocher, D.; Peter, M.; Tyers, M. The F-Box Protein Dia2 Overcomes Replication Impedance to Promote Genome Stability in Saccharomyces Cerevisiae. Genetics 2006, 174, 1709–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoege, C.; Pfander, B.; Moldovan, G.-L.; Pyrowolakis, G.; Jentsch, S. RAD6-Dependent DNA Repair Is Linked to Modification of PCNA by Ubiquitin and SUMO. Nature 2002, 419, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ragland, R.L.; Patel, S.; Rivard, R.S.; Smith, K.; Peters, A.A.; Bielinsky, A.K.; Brown, E.J. RNF4 and PLK1 Are Required for Replication Fork Collapse in ATR-Deficient Cells. Genes Dev. 2013, 27, 2259–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccaldi, R.; Sarangi, P.; D’Andrea, A.D. The Fanconi Anaemia Pathway: New Players and New Functions. Nat. Rev. Mol. Cell Biol. 2016, 17, 337–349. [Google Scholar] [CrossRef]
- Mcintosh, J.R.; Mcintosh, R.J. Mitosis. Cold Spring Harb. Perspect. Biol. 2016, 8, 023218. [Google Scholar] [CrossRef]
- Rieder, C.L. Mitosis in Vertebrates: The G2/M and M/A Transitions and Their Associated Checkpoints. Chromosome Res. 2011, 19, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Heijink, A.M.; Krajewska, M.; Van Vugt, M.A.T.M. The DNA Damage Response during Mitosis. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 2013, 750, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Hirota, T. Chromosome Segregation Machinery and Cancer. Cancer Sci. 2009, 100, 1158–1165. [Google Scholar] [CrossRef]
- Monda, J.K.; Cheeseman, I.M. The Kinetochore-Microtubule Interface at a Glance. J. Cell Sci. 2018, 131, 214577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haschka, M.; Karbon, G.; Fava, L.L.; Villunger, A. Perturbing Mitosis for Anti-cancer Therapy: Is Cell Death the Only Answer? EMBO Rep. 2018, 19, 45440. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Li, Y.; Petersen, R.B.; Huang, K. Targeting Mitosis Exit: A Brake for Cancer Cell Proliferation. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Van de Pasch, L.A.L.; Miles, A.J.; Nijenhuis, W.; Brabers, N.A.C.H.; van Leenen, D.; Lijnzaad, P.; Brown, M.K.; Ouellet, J.; Barral, Y.; Kops, G.J.P.L.; et al. Centromere Binding and a Conserved Role in Chromosome Stability for SUMO-Dependent Ubiquitin Ligases. PLoS ONE 2013, 8, e65628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, C.P.; Wang, G.; Lee, N.S.; Kolodner, R.D.; Putnam, C.D.; Zhou, H. Distinct SUMO Ligases Cooperate with Esc2 and Slx5 to Suppress Duplication-Mediated Genome Rearrangements. PLoS Genet. 2013, 9, e1003670. [Google Scholar] [CrossRef] [PubMed]
- Eisenstatt, J.R.; Ohkuni, K.; Au, W.-C.; Preston, O.; Gliford, L.; Suva, E.; Costanzo, M.; Boone, C.; Basrai, M.A. Reduced Gene Dosage of Histone H4 Prevents CENP-A Mislocalization and Chromosomal Instability in Saccharomyces Cerevisiae. Genetics 2021. [Google Scholar] [CrossRef]
- Putnam, C.D.; Hayes, T.K.; Kolodner, R.D. Specific Pathways Prevent Duplication-Mediated Genome Rearrangements. Nature 2009, 460, 984–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirota, K.; Tsuda, M.; Murai, J.; Takagi, T.; Keka, I.S.S.; Narita, T.; Fujita, M.; Sasanuma, H.; Kobayashi, J.; Takeda, S. SUMO-Targeted Ubiquitin Ligase RNF4 Plays a Critical Role in Preventing Chromosome Loss. Genes Cells 2014, 19, 743–754. [Google Scholar] [CrossRef]
- Saito, M.; Fujimitsu, Y.; Sasano, T.; Yoshikai, Y.; Ban-Ishihara, R.; Nariai, Y.; Urano, T.; Saitoh, H. The SUMO-Targeted Ubiquitin Ligase RNF4 Localizes to Etoposide-Exposed Mitotic Chromosomes: Implication for a Novel DNA Damage Response during Mitosis. Biochem. Biophys. Res. Commun. 2014, 447, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Buchwalter, A.; Kaneshiro, J.M.; Hetzer, M.W. Coaching from the Sidelines: The Nuclear Periphery in Genome Regulation. Nat. Rev. Genet. 2019, 20, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Seeber, A.; Gasser, S.M. Chromatin Organization and Dynamics in Double-Strand Break Repair. Curr. Opin. Genet. Dev. 2017, 43, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whalen, J.M.; Freudenreich, C.H. Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability. Genes 2020, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Janin, A.; Bauer, D.; Ratti, F.; Millat, G.; Méjat, A. Nuclear Envelopathies: A Complex LINC between Nuclear Envelope and Pathology. Orphanet J. Rare Dis. 2017, 12, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuma, S.; D’Angelo, M.A. The Roles of the Nuclear Pore Complex in Cellular Dysfunction, Aging and Disease. Semin. Cell Dev. Biol. 2017, 68, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Marchal, C.; Sima, J.; Gilbert, D.M. Control of DNA Replication Timing in the 3D Genome. Nat. Rev. Mol. Cell Biol. 2019, 20, 721–737. [Google Scholar] [CrossRef]
- Therizols, P.; Fairhead, C.; Cabal, G.G.; Genovesio, A.; Olivo-Marin, J.-C.; Dujon, B.; Fabre, E. Telomere Tethering at the Nuclear Periphery Is Essential for Efficient DNA Double Strand Break Repair in Subtelomeric Region. J. Cell Biol. 2006, 172, 189–199. [Google Scholar] [CrossRef]
- Niño, C.A.; Guet, D.; Gay, A.; Brutus, S.; Jourquin, F.; Mendiratta, S.; Salamero, J.; Géli, V.; Dargemont, C. Posttranslational Marks Control Architectural and Functional Plasticity of the Nuclear Pore Complex Basket. J. Cell Biol. 2016, 212, 167–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, S.; Dubrana, K.; Tsai-Pflugfelder, M.; Davidson, M.B.; Roberts, T.M.; Brown, G.W.; Varela, E.; Hediger, F.; Gasser, S.M.; Krogan, N.J. Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase. Science 2008, 322, 597–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oza, P.; Jaspersen, S.L.; Miele, A.; Dekker, J.; Peterson, C.L. Mechanisms That Regulate Localization of a DNA Double-Strand Break to the Nuclear Periphery. Genes Dev. 2009, 23, 912–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horigome, C.; Bustard, D.E.; Marcomini, I.; Delgoshaie, N.; Tsai-Pflugfelder, M.; Cobb, J.A.; Gasser, S.M. PolySUMOylation by Siz2 and Mms21 Triggers Relocation of DNA Breaks to Nuclear Pores through the Slx5/Slx8 STUbL. Genes Dev. 2016, 30, 931–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schober, H.; Ferreira, H.; Kalck, V.; Gehlen, L.R.; Gasser, S.M. Yeast Telomerase and the SUN Domain Protein Mps3 Anchor Telomeres and Repress Subtelomeric Recombination. Genes Dev. 2009, 23, 928–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadaroo, B.; Teixeira, M.T.; Luciano, P.; Eckert-Boulet, N.; Germann, S.M.; Simon, M.N.; Gallina, I.; Abdallah, P.; Gilson, E.; Géli, V.; et al. The DNA Damage Response at Eroded Telomeres and Tethering to the Nuclear Pore Complex. Nat. Cell Biol. 2009, 11, 980–987. [Google Scholar] [CrossRef]
- Charifi, F.; Churikov, D.; Eckert-Boulet, N.; Minguet, C.; Jourquin, F.; Hardy, J.; Lisby, M.; Simon, M.-N.; Géli, V. Rad52 SUMOylation Functions as a Molecular Switch That Determines a Balance between the Rad51- and Rad59-Dependent Survivors. iScience 2021, 24, 102231. [Google Scholar] [CrossRef]
- Whalen, J.M.; Dhingra, N.; Wei, L.; Zhao, X.; Freudenreich, C.H. Relocation of Collapsed Forks to the Nuclear Pore Complex Depends on Sumoylation of DNA Repair Proteins and Permits Rad51 Association. Cell Rep. 2020, 31, 107635. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rosell, J.; Sunjevaric, I.; De Piccoli, G.; Sacher, M.; Eckert-Boulet, N.; Reid, R.; Jentsch, S.; Rothstein, R.; Aragón, L.; Lisby, M. The Smc5–Smc6 Complex and SUMO Modification of Rad52 Regulates Recombinational Repair at the Ribosomal Gene Locus. Nat. Cell Biol. 2007, 9, 923–931. [Google Scholar] [CrossRef]
- Chiolo, I.; Minoda, A.; Colmenares, S.U.; Polyzos, A.; Costes, S.V.; Karpen, G.H. Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair. Cell 2011, 144, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Jakob, B.; Splinter, J.; Conrad, S.; Voss, K.-O.; Zink, D.; Durante, M.; Löbrich, M.; Taucher-Scholz, G. DNA Double-Strand Breaks in Heterochromatin Elicit Fast Repair Protein Recruitment, Histone H2AX Phosphorylation and Relocation to Euchromatin. Nucleic Acids Res. 2011, 39, 6489–6499. [Google Scholar] [CrossRef] [PubMed]
- Kalocsay, M.; Hiller, N.J.; Jentsch, S. Chromosome-Wide Rad51 Spreading and SUMO-H2A.Z-Dependent Chromosome Fixation in Response to a Persistent DNA Double-Strand Break. Mol. Cell 2009, 33, 335–343. [Google Scholar] [CrossRef]
- Horigome, C.; Oma, Y.; Konishi, T.; Schmid, R.; Marcomini, I.; Hauer, M.H.; Dion, V.; Harata, M.; Gasser, S.M. SWR1 and INO80 Chromatin Remodelers Contribute to DNA Double-Strand Break Perinuclear Anchorage Site Choice. Mol. Cell 2014, 55, 626–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, T.; Spatola, B.; Delabaere, L.; Bowlin, K.; Hopp, H.; Kunitake, R.; Karpen, G.H.; Chiolo, I. Heterochromatic Breaks Move to the Nuclear Periphery to Continue Recombinational Repair. Nat. Cell Biol. 2015, 17, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Tsouroula, K.; Furst, A.; Rogier, M.; Heyer, V.; Maglott-Roth, A.; Ferrand, A.; Reina-San-Martin, B.; Soutoglou, E. Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin. Mol. Cell 2016, 63, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Lundblad, V.; Szostak, J.W. A Mutant with a Defect in Telomere Elongation Leads to Senescence in Yeast. Cell 1989, 57, 633–643. [Google Scholar] [CrossRef]
- Chen, Q.; Ijpma, A.; Greider, C.W. Two Survivor Pathways That Allow Growth in the Absence of Telomerase Are Generated by Distinct Telomere Recombination Events. Mol. Cell. Biol. 2001, 21, 1819–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Géli, V.; Lisby, M. Recombinational DNA Repair Is Regulated by Compartmentalization of DNA Lesions at the Nuclear Pore Complex. BioEssays 2015, 37, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Churikov, D.; Charifi, F.; Eckert-Boulet, N.; Silva, S.; Simon, M.-N.; Lisby, M.; Géli, V. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination. Cell Rep. 2016, 15, 1242–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, P.; Whalen, J.; Minguet, C.; Churikov, D.; Freudenreich, C.; Simon, M.-N.; Géli, V. The Nuclear Pore Complex Prevents Sister Chromatid Recombination during Replicative Senescence. Nat. Commun. 2020, 11, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinzaru, A.M.; Kareh, M.; Lamm, N.; Lazzerini-Denchi, E.; Cesare, A.J.; Sfeir, A. Replication Stress Conferred by POT1 Dysfunction Promotes Telomere Relocalization to the Nuclear Pore. Genes Dev. 2020, 34, 1619–1636. [Google Scholar] [CrossRef] [PubMed]
- Prudden, J.; Perry, J.J.P.; Nie, M.; Vashisht, A.A.; Arvai, A.S.; Hitomi, C.; Guenther, G.; Wohlschlegel, J.A.; Tainer, J.A.; Boddy, M.N. DNA Repair and Global Sumoylation Are Regulated by Distinct Ubc9 Noncovalent Complexes. Mol. Cell. Biol. 2011, 31, 2299–2310. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Benhenda, S.; Wu, H.; Lallemand-Breitenbach, V.; Zhen, T.; Jollivet, F.; Peres, L.; Li, Y.; Chen, S.-J.; Chen, Z.; et al. RING Tetramerization Is Required for Nuclear Body Biogenesis and PML Sumoylation. Nat. Commun. 2018, 9, 1277. [Google Scholar] [CrossRef]
- Lallemand-Breitenbach, V.; de Thé, H. PML Nuclear Bodies: From Architecture to Function. Curr. Opin. Cell Biol. 2018, 52, 154–161. [Google Scholar] [CrossRef]
- Sahin, U.; de Thé, H.; Lallemand-Breitenbach, V. PML Nuclear Bodies: Assembly and Oxidative Stress-Sensitive Sumoylation. Nucleus 2014, 5, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Mol. Cell 2018, 71, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Kao, H.-Y. The Function, Regulation and Therapeutic Implications of the Tumor Suppressor Protein, PML. Cell Biosci. 2015, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.R.; Munkhjargal, A.; Kim, M.-J.; Park, S.Y.; Jung, E.; Ryu, J.-H.; Yang, Y.; Lim, J.-S.; Kim, Y. The Functional Roles of PML Nuclear Bodies in Genome Maintenance. Mutat. Res. Mol. Mech. Mutagen. 2018, 809, 99–107. [Google Scholar] [CrossRef]
- Jang, S.-M.; Nathans, J.F.; Fu, H.; Redon, C.E.; Jenkins, L.M.; Thakur, B.L.; Pongor, L.S.; Baris, A.M.; Gross, J.M.; OʹNeill, M.J.; et al. The RepID–CRL4 Ubiquitin Ligase Complex Regulates Metaphase to Anaphase Transition via BUB3 Degradation. Nat. Commun. 2020, 11, 24. [Google Scholar] [CrossRef]
- Emadi, A.; Gore, S.D. Arsenic Trioxide—An Old Drug Rediscovered. Blood Rev. 2010, 24, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Geoffroy, M.-C.; Jaffray, E.G.; Walker, K.J.; Hay, R.T. Arsenic-Induced SUMO-Dependent Recruitment of RNF4 into PML Nuclear Bodies. Mol. Biol. Cell 2010, 21, 4227–4239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Y.; Yang, X. SUMO E3 Ligase Activity of TRIM Proteins. Oncogene 2011, 30, 1108–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabellino, A.; Carter, B.; Konstantinidou, G.; Wu, S.-Y.; Rimessi, A.; Byers, L.A.; Heymach, J.V.; Girard, L.; Chiang, C.-M.; Teruya-Feldstein, J.; et al. The SUMO E3-Ligase PIAS1 Regulates the Tumor Suppressor PML and Its Oncogenic Counterpart PML-RARA. Cancer Res. 2012, 72, 2275–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satow, R.; Shitashige, M.; Jigami, T.; Fukami, K.; Honda, K.; Kitabayashi, I.; Yamada, T. β-Catenin Inhibits Promyelocytic Leukemia Protein Tumor Suppressor Function in Colorectal Cancer Cells. Gastroenterology 2012, 142, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Koidl, S.; Eisenhardt, N.; Fatouros, C.; Droescher, M.; Chaugule, V.K.; Pichler, A. The SUMO2/3 Specific E3 Ligase ZNF451-1 Regulates PML Stability. Int. J. Biochem. Cell Biol. 2016, 79, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Kamitani, T.; Kito, K.; Nguyen, H.P.; Wada, H.; Fukuda-Kamitani, T.; Yeh, E.T.H. Identification of Three Major Sentrinization Sites in PML. J. Biol. Chem. 1998, 273, 26675–26682. [Google Scholar] [CrossRef] [Green Version]
- Fasci, D.; Anania, V.G.; Lill, J.R.; Salvesen, G.S. SUMO Deconjugation Is Required for Arsenic-Triggered Ubiquitylation of PML. Sci. Signal. 2015, 8, ra56. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.C.; Lee, C.C.; Yao, Y.L.; Lai, C.C.; Schmitz, M.L.; Yang, W.M. SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Sci. Rep. 2016, 6, 26509. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Giasson, B.I.; Glavis-Bloom, A.; Brewer, M.D.; Shorter, J.; Gitler, A.D.; Yang, X. A Cellular System That Degrades Misfolded Proteins and Protects against Neurodegeneration. Mol. Cell 2014, 55, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, D.; Qiu, F.; Zhang, L.-L.; Liu, S.-K.; Li, Y.-Y.; Liu, M.-T.; Wu, D.; Wang, J.-X.; Ding, X.-Q.; et al. Manipulating PML SUMOylation via Silencing UBC9 and RNF4 Regulates Cardiac Fibrosis. Mol. Ther. 2017, 25, 666–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiten-Schmitz, J.; Wagner, K.; Piller, T.; Kaulich, M.; Alberti, S.; Müller, S. The Nuclear SUMO-Targeted Ubiquitin Quality Control Network Regulates the Dynamics of Cytoplasmic Stress Granules. Mol. Cell 2020, 79, 54–67.e7. [Google Scholar] [CrossRef] [PubMed]
- Attwood, K.M.; Salsman, J.; Chung, D.; Mathavarajah, S.; Van Iderstine, C.; Dellaire, G. PML Isoform Expression and DNA Break Location Relative to PML Nuclear Bodies Impacts the Efficiency of Homologous Recombination. Biochem. Cell Biol. 2020, 98, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Imrichova, T.; Hubackova, S.; Kucerova, A.; Kosla, J.; Bartek, J.; Hodny, Z.; Vasicova, P. Dynamic PML Protein Nucleolar Associations with Persistent DNA Damage Lesions in Response to Nucleolar Stress and Senescence-Inducing Stimuli. Aging 2019, 11, 7206–7235. [Google Scholar] [CrossRef]
- Vancurova, M.; Hanzlikova, H.; Knoblochova, L.; Kosla, J.; Majera, D.; Mistrik, M.; Burdova, K.; Hodny, Z.; Bartek, J. PML Nuclear Bodies Are Recruited to Persistent DNA Damage Lesions in an RNF168-53BP1 Dependent Manner and Contribute to DNA Repair. DNA Repair 2019, 78, 114–127. [Google Scholar] [CrossRef]
- Shire, K.; Wong, A.I.; Tatham, M.H.; Anderson, O.F.; Ripsman, D.; Gulstene, S.; Moffat, J.; Hay, R.T.; Frappier, L. Identification of RNF168 as a PML Nuclear Body Regulator. J. Cell Sci. 2016, 129, 580–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, I.; Osterwald, S.; Deeg, K.I.; Rippe, K. PML Body Meets Telomere: The Beginning of an ALTernate Ending? Nucleus 2012, 3, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Loe, T.K.; Li, J.S.Z.; Zhang, Y.; Azeroglu, B.; Boddy, M.N.; Denchi, E.L. Telomere Length Heterogeneity in ALT Cells Is Maintained by PML-Dependent Localization of the BTR Complex to Telomeres. Genes Dev. 2020, 34, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-M.; Genois, M.-M.; Ouyang, J.; Lan, L.; Zou, L. Alternative Lengthening of Telomeres Is a Self-Perpetuating Process in ALT-Associated PML Bodies. Mol. Cell 2021, 81, 1027–1042.e4. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, A.-M.; Poukka, H.; Karvonen, U.; Häkli, M.; Jänne, O.A.; Palvimo, J.J. Identification of a Novel RING Finger Protein as a Coregulator in Steroid Receptor-Mediated Gene Transcription. Mol. Cell. Biol. 1998, 18, 5128–5139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pero, R.; Lembo, F.; Palmieri, E.A.; Vitiello, C.; Fedele, M.; Fusco, A.; Bruni, C.B.; Chiariotti, L. PATZ Attenuates the RNF4-Mediated Enhancement of Androgen Receptor-Dependent Transcription. J. Biol. Chem. 2002, 277, 3280–3285. [Google Scholar] [CrossRef] [Green Version]
- Hirvonen-Santti, S.J.; Rannikko, A.; Santti, H.; Savolainen, S.; Nyberg, M.; Jänne, O.A.; Palvimo, J.J.; Culig, Z. Down-Regulation of Estrogen Receptor β and Transcriptional Coregulator SNURF/RNF4 in Testicular Germ Cell Cancer. Eur. Urol. 2003, 44, 742–747. [Google Scholar] [CrossRef]
- Kaiser, F.J.; Möröy, T.; Chang, G.T.G.; Horsthemke, B.; Lüdecke, H.J. The RING Finger Protein RNF4, a Co-Regulator of Transcription, Interacts with the TRPS1 Transcription Factor. J. Biol. Chem. 2003, 278, 38780–38785. [Google Scholar] [CrossRef] [Green Version]
- Alcalay, M.; Meani, N.; Gelmetti, V.; Fantozzi, A.; Fagioli, M.; Orleth, A.; Riganelli, D.; Sebastiani, C.; Cappelli, E.; Casciari, C.; et al. Acute Myeloid Leukemia Fusion Proteins Deregulate Genes Involved in Stem Cell Maintenance and DNA Repair. J. Clin. Invest. 2003, 112, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Dang, C.V. MYC on the Path to Cancer. Cell 2012, 149, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.J.; Abed, M.; Heuberger, J.; Novak, R.; Zohar, Y.; Beltran Lopez, A.P.; Trausch-Azar, J.S.; Ilagan, M.X.G.; Benhamou, D.; Dittmar, G.; et al. RNF4-Dependent Oncogene Activation by Protein Stabilization. Cell Rep. 2016, 16, 3388–3400. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Mu, R.; Chang, Y.; Wang, Y.-B.; Wu, M.; Tu, H.-Q.; Zhang, Y.-C.; Guo, S.-S.; Qin, X.-H.; Li, T.; et al. RNF4 Negatively Regulates NF-ΚB Signaling by down-Regulating TAB2. FEBS Lett. 2015, 589, 2850–2858. [Google Scholar] [CrossRef] [Green Version]
- Episkopou, V.; Arkell, R.; Timmons, P.M.; Walsh, J.J.; Andrew, R.L.; Swan, D. Induction of the Mammalian Node Requires Arkadia Function in the Extraembryonic Lineages. Nature 2001, 410, 825–830. [Google Scholar] [CrossRef]
- Mavrakis, K.J.; Andrew, R.L.; Kian, L.L.; Petropoulou, C.; Dixon, J.E.; Navaratnam, N.; Norris, D.P.; Episkopou, V. Arkadia Enhances Nodal/TGF-β Signaling by Coupling Phospho-Smad2/3 Activity and Turnover. PLoS Biol. 2007, 5, 586–603. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Drabsch, Y.; Dekker, T.J.A.; de Vinuesa, A.G.; Li, Y.; Hawinkels, L.J.A.C.; Sheppard, K.-A.; Goumans, M.-J.; Luwor, R.B.; de Vries, C.J.; et al. ten. Nuclear Receptor NR4A1 Promotes Breast Cancer Invasion and Metastasis by Activating TGF-β Signalling. Nat. Commun. 2014, 5, 3388. [Google Scholar] [CrossRef] [Green Version]
- Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An Oncogene-Induced DNA Damage Model for Cancer Development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [Green Version]
- Primo, L.M.F.; Teixeira, L.K. DNA Replication Stress: Oncogenes in the Spotlight. Genet. Mol. Biol. 2019, 43, e20190138. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Kunisawa, R.; Thorner, J. A Presumptive Helicase (MOT1 Gene Product) Affects Gene Expression and Is Required for Viability in the Yeast Saccharomyces Cerevisiae. Mol. Cell. Biol. 1992, 12, 1879–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- True, J.D.; Muldoon, J.J.; Carver, M.N.; Poorey, K.; Shetty, S.J.; Bekiranov, S.; Auble, D.T. The Modifier of Transcription 1 (Mot1) ATPase and Spt16 Histone Chaperone Co-Regulate Transcription through Preinitiation Complex Assembly and Nucleosome Organization. J. Biol. Chem. 2016, 291, 15307–15319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, J.; Perez, E.; Nemzow, L.; Gong, F. Role of Deubiquitinases in DNA Damage Response. DNA Repair (Amst) 2019, 76, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Garvin, A.J. Beyond Reversal: Ubiquitin and Ubiquitin-like Proteases and the Orchestration of the DNA Double Strand Break Repair Response. Biochem. Soc. Trans. 2019, 47, 1881–1893. [Google Scholar] [CrossRef] [Green Version]
- Mullen, J.R.; Das, M.; Brill, S.J. Genetic Evidence That Polysumoylation Bypasses the Need for a SUMO-Targeted Ub Ligase. Genetics 2011, 187, 73–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, J.R.; Chen, C.-F.; Brill, S.J. Wss1 Is a SUMO-Dependent Isopeptidase That Interacts Genetically with the Slx5-Slx8 SUMO-Targeted Ubiquitin Ligase. Mol. Cell. Biol. 2010, 30, 3737–3748. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Huang, C.; Singh, M.; Carpenter, P.B.; Yeh, E.T.H. Regulation of DNA Repair through DeSUMOylation and SUMOylation of Replication Protein A Complex. Mol. Cell 2010, 39, 333–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, I.A.; Schimmel, J.; Eifler, K.; Olsen, J.V.; Vertegaal, A.C.O. Ubiquitin-Specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4). J. Biol. Chem. 2015, 290, 15526–15537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecona, E.; Rodriguez-Acebes, S.; Specks, J.; Lopez-Contreras, A.J.; Ruppen, I.; Murga, M.; Muñoz, J.; Mendez, J.; Fernandez-Capetillo, O. USP7 Is a SUMO Deubiquitinase Essential for DNA Replication. Nat. Struct. Mol. Biol. 2016, 23, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-C.; Lin, Y.-C.; Liu, C.-H.; Chung, H.-C.; Wang, Y.-T.; Lin, Y.-W.; Ma, H.-I.; Tu, P.-H.; Lawler, S.E.; Chen, R.-H. USP11 Regulates PML Stability to Control Notch-Induced Malignancy in Brain Tumours. Nat. Commun. 2014, 5, 3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, D.; Ma, S.; Shan, L.; Wang, Y.; Wang, Y.; Cao, C.; Liu, B.; Yang, C.; Wang, L.; Tian, S.; et al. Ubiquitin-Specific Protease 7 Sustains DNA Damage Response and Promotes Cervical Carcinogenesis. J. Clin. Investig. 2018, 128, 4280–4296. [Google Scholar] [CrossRef] [PubMed]
- Valles, G.J.; Bezsonova, I.; Woodgate, R.; Ashton, N.W. USP7 Is a Master Regulator of Genome Stability. Front. Cell Dev. Biol. 2020, 8, 1–23. [Google Scholar]
- Diefenbacher, M.; Orian, A. Stabilization of Nuclear Oncoproteins by RNF4 and the Ubiquitin System in Cancer. Mol. Cell. Oncol. 2017, 4, e1260671. [Google Scholar] [CrossRef] [Green Version]
- Avitan-Hersh, E.; Feng, Y.; Oknin Vaisman, A.; Abu Ahmad, Y.; Zohar, Y.; Zhang, T.; Lee, J.S.; Lazar, I.; Sheikh Khalil, S.; Feiler, Y.; et al. Regulation of EIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. J. Investig. Dermatol. 2020, 140, 2466–2477. [Google Scholar] [CrossRef]
- Sharma, V.; Antonacopoulou, A.G.; Tanaka, S.; Panoutsopoulos, A.A.; Bravou, V.; Kalofonos, H.P.; Episkopou, V. Enhancement of TGF-β Signaling Responses by the E3 Ubiquitin Ligase Arkadia Provides Tumor Suppression in Colorectal Cancer. Cancer Res. 2011, 71, 6438–6449. [Google Scholar] [CrossRef] [Green Version]
- Briones-Orta, M.A.; Levy, L.; Madsen, C.D.; Das, D.; Erker, Y.; Sahai, E.; Hill, C.S. Arkadia Regulates Tumor Metastasis by Modulation of the TGF-β Pathway. Cancer Res. 2013, 73, 1800–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, F.; Han, Y.; Shao, X.; Paulo, P.; Li, W.; Zhu, M.; Tang, N.; Guo, S.; Chen, Y.; Wu, H.; et al. Knockdown of Endogenous RNF4 Exacerbates Ischaemia-induced Cardiomyocyte Apoptosis in Mice. J. Cell. Mol. Med. 2020, 24, 9545–9559. [Google Scholar] [CrossRef] [PubMed]
STUbL | Species | E2 (Ubiquitin Linkage If Known) [Reference] |
---|---|---|
Slx5/Slx8 | S. cerevisiae | Ubc1 [36], Ubc4 [30,36,66,67], Ubc5 [36], Ubc13-Mms2 (K63) [36], UbcH6 [36], UbcH13-Uev1a (K63) [36] |
Rad18 | S. cerevisiae | Rad6 [31] |
RNF4 | H. sapiens | Ubc4 1 (K63) [68], UbcH5a 2 [44,46,69,70,71], UbcH5b 1 [63,69,70], UbcH5c 3 [70], MmUbc7 4 [69], Ubc13 5 (K63) [46,69,72,73], Mms2 6 (K63) [46], Ubc16 7 [72,73], Rad6B 8 [69,70], E2-25K 9 [69] |
RNF111 | H. sapiens | UbcH5b 1 [74,75,76], UbcH5c 3 [74,75], Ubc13 5-Mms2 6 (K63) [74], Ubc12 10 [77] |
STUbL (Species) | Biological Process | Substrate (Tier 1) [Reference] |
---|---|---|
Rfp1/2, Slx8 (S. pombe) | DNA repair | TOP1 (2) [107] |
Replication | Rad60 (1) [108], TOP1 (2) [107] | |
SUMO regulation | Pli1 (2) [109] | |
Uls1 (S. cerevisiae) | DNA repair | HR: Rad51 (3) [110]; NHEJ: Rap1 (2) [95] |
Replication | Srs2 (2) [111] | |
Chromosome segregation | H2A.Z (3) [112,113] | |
Slx5/Slx8 (S. cerevisiae) | DNA repair | HR: Yen1 (1) [114], Rad52 (2) [97,115], RPA (1) [115], Rad59 (2) [115]; Other repair: TOP1-DPC (2) [116], TOP2-DPC (2) [116] |
Replication | Srs2 (2) [111], DDK (2) [117] | |
Mitosis | Kinetochore-specific: Bir1 (2) [22], Sli15 (2) [22]; Centromere-specific: Mcd1 (2) [118], Cse4 (2) [119,120,121,122]; Chromosome segregation: H2A.Z (3) [112,113], Mms4 (2) [123] | |
Transcription | Mot1 (2) [66], Matα1 (2) [124], Matα2 (1) [125,126,127], Tof2 (2) [128,129] | |
SUMO regulation | Siz1 (1) [130] | |
Rad18 (S. cerevisiae) | Replication | PCNA (1) [31] |
Dgrn (D. melanogaster) | Transcription | Hairy (1) [32], Groucho (2) [32], spl-C proteins (2) [33] |
RNF4 (H. sapiens) | DNA repair | HR: MDC1 (1) [98,100,101,105], RPA1 (2) [98,105], BRCA1 (2) [101], KAP1 (2) [102], CtIP (1) [131]; NHEJ: TRF2 (2) [132], XRCC5 (3) [133], 53BP1 (3) [39]; Other repair: TOP1-DPC (1) [116], TOP2-DPC (1) [116] |
Replication | NIP45 (2) [108], FANCD2 (2)/FANCI (1) [134], FANCA (2) [135], FANCE (n/a) [135], BLM (3) [133], RAD18 (2) [133] | |
Mitosis | Kinetochore-specific: CENP-I (2) [136]; Chromosome segregation: KIF23 (2) [137], MIS18BP1 (2) [137] | |
PML homeostasis | PML (1) [79,108,138], SP100 (2) [139], TDG (2) [139], HIPK2 (2) [139] | |
Transcription | c-Myc (2) [140], Sp1 (2) [141], PARP1 (2) [142], HIF-2α (2) [143], FIH1 (2) [144], NRF2 (2) [145], HNF4α (1) [146], ZNF746 (2) [147], MeCP2 (1) [148], KDM5B (2) [149,150], SETDB1(2) [133] | |
SUMO/Ub regulation | SUMO: UBC9 (3) [133], PIAS1 (2) [133], PIAS2 (3) [133], PIAS3 (3) [133], NSMCE2 (3) [133], ZNF451 (3) [133]; Ub: USP7 (3) [133] | |
Viral, cancer, and disease | Viral: Daxx (2) [151], Tax (1) [68,152]; Cancer: NDRG2 (2) [153], CBX2 (2) [154], PIM1 (2) [155]; Disease: ATXN7 (2) [156] | |
RNF111 (H. sapiens) | Replication | Pol η (2) [157] |
PML homeostasis | PML (2) [158] | |
Transcription | NRF2 (2) [159], SMAD7 (2) [160,161,162], c-Ski (2) [160,163,164,165], SnoN (2) [160,163,164,166] | |
Cancer | SMAD7 (2) [160,161,162], c-Ski (2) [160,163,164,165], SnoN (2) [160,163,164,166], ESRP2 (2) [167] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-C.; Oram, M.K.; Bielinsky, A.-K. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int. J. Mol. Sci. 2021, 22, 5391. https://doi.org/10.3390/ijms22105391
Chang Y-C, Oram MK, Bielinsky A-K. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. International Journal of Molecular Sciences. 2021; 22(10):5391. https://doi.org/10.3390/ijms22105391
Chicago/Turabian StyleChang, Ya-Chu, Marissa K. Oram, and Anja-Katrin Bielinsky. 2021. "SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability" International Journal of Molecular Sciences 22, no. 10: 5391. https://doi.org/10.3390/ijms22105391