Glioblastomas are high-grade and aggressive CNS tumors. Due to heterogeneous composition, rapid growth, and suppressive immune microenvironment, gliomablastomas remain difficult to successfully treat. JCI editors Amy Heimberger, Daniel Brat, and Maciej Lesniak curated the reviews in this issue’s series to confront the many aspects of immune involvement in these clinically challenging tumors. Reviews in this series describe how tumor-associated macrophages, microglia, and neutrophils modulate glioblastoma progression and therapy response. They also explore new concepts for targeting the immune microenvironment in glioblastoma, including strategies targeting immunometabolism or epigenetic regulation, personalized immunotherapy approaches, and next-generation antigen presenting cell-based therapies.
Glioblastoma (GBM) is the most aggressive tumor in the central nervous system and contains a highly immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages and microglia (TAMs) are a dominant population of immune cells in the GBM TME that contribute to most GBM hallmarks, including immunosuppression. The understanding of TAMs in GBM has been limited by the lack of powerful tools to characterize them. However, recent progress on single-cell technologies offers an opportunity to precisely characterize TAMs at the single-cell level and identify new TAM subpopulations with specific tumor-modulatory functions in GBM. In this Review, we discuss TAM heterogeneity and plasticity in the TME and summarize current TAM-targeted therapeutic potential in GBM. We anticipate that the use of single-cell technologies followed by functional studies will accelerate the development of novel and effective TAM-targeted therapeutics for GBM patients.
Fatima Khan, Lizhi Pang, Madeline Dunterman, Maciej S. Lesniak, Amy B. Heimberger, Peiwen Chen
Immune checkpoint blockade (ICB) has revolutionized modern cancer therapy, arousing great interest in the neuro-oncology community. While several reports show that subsets of patients with glioma exhibit durable responses to immunotherapy, the efficacy of this treatment has not been observed for unselected patient populations, preventing its broad clinical implementation for gliomas and glioblastoma (GBM). To exploit the maximum therapeutic potential of ICB for patients with glioma, understanding the different aspects of glioma-related tumor immune responses is of critical importance. In this Review, we discuss contributing factors that distinguish subsets of patients with glioma who may benefit from ICB. Specifically, we discuss (a) the complex interaction between the tumor immune microenvironment and glioma cells as a potential influence on immunotherapy responses; (b) promising biomarkers for responses to immune checkpoint inhibitors; and (c) the potential contributions of peripheral immune cells to therapeutic responses.
Víctor A. Arrieta, Crismita Dmello, Daniel J. McGrail, Daniel J. Brat, Catalina Lee-Chang, Amy B. Heimberger, Dhan Chand, Roger Stupp, Adam M. Sonabend
Glioblastoma (GBM) is a primary tumor of the brain defined by its uniform lethality and resistance to conventional therapies. There have been considerable efforts to untangle the metabolic underpinnings of this disease to find novel therapeutic avenues for treatment. An emerging focus in this field is fatty acid (FA) metabolism, which is critical for numerous diverse biological processes involved in GBM pathogenesis. These processes can be classified into four broad fates: anabolism, catabolism, regulation of ferroptosis, and the generation of signaling molecules. Each fate provides a unique perspective by which we can inspect GBM biology and gives us a road map to understanding this complicated field. This Review discusses the basic, translational, and clinical insights into each of these fates to provide a contemporary understanding of FA biology in GBM. It is clear, based on the literature, that there are far more questions than answers in the field of FA metabolism in GBM, and substantial efforts should be made to untangle these complex processes in this intractable disease.
Jason Miska, Navdeep S. Chandel
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell–centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo–differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics’ past, present, and future in the context of primary brain tumors.
Catalina Lee-Chang, Maciej S. Lesniak
Epigenetic remodeling is a molecular hallmark of gliomas, and it has been identified as a key mediator of glioma progression. Epigenetic dysregulation contributes to gliomagenesis, tumor progression, and responses to immunotherapies, as well as determining clinical features. This epigenetic remodeling includes changes in histone modifications, chromatin structure, and DNA methylation, all of which are driven by mutations in genes such as histone 3 genes (H3C1 and H3F3A), isocitrate dehydrogenase 1/2 (IDH1/2), α-thalassemia/mental retardation, X-linked (ATRX), and additional chromatin remodelers. Although much of the initial research primarily identified how the epigenetic aberrations impacted glioma progression by solely examining the glioma cells, recent studies have aimed at establishing the role of epigenetic alterations in shaping the tumor microenvironment (TME). In this review, we discuss the mechanisms by which these epigenetic phenomena in glioma remodel the TME and how current therapies targeting epigenetic dysregulation affect the glioma immune response and therapeutic outcomes. Understanding the link between epigenetic remodeling and the glioma TME provides insights into the implementation of epigenetic-targeting therapies to improve the antitumor immune response.
Brandon L. McClellan, Santiago Haase, Felipe J. Nunez, Mahmoud S. Alghamri, Ali A. Dabaja, Pedro R. Lowenstein, Maria G. Castro
Glioblastoma (GBM) is the most belligerent and frequent brain tumor in adults. Research over the past two decades has provided increased knowledge of the genomic and molecular landscape of GBM and highlighted the presence of a high degree of inter- and intratumor heterogeneity within the neoplastic compartment. It is now appreciated that GBMs are composed of multiple distinct and impressionable neoplastic and non-neoplastic cell types that form the unique brain tumor microenvironment (TME). Non-neoplastic cells in the TME form reciprocal interactions with neoplastic cells to promote tumor growth and invasion, and together they influence the tumor response to standard-of-care therapies as well as emerging immunotherapies. One of the most prevalent non-neoplastic cell types in the GBM TME are myeloid cells, the most abundant of which are of hematopoietic origin, including monocytes/monocyte-derived macrophages. Less abundant, although still a notable presence, are neutrophils of hematopoietic origin and intrinsic brain-resident microglia. In this Review we focus on neutrophils and monocytes that infiltrate tumors from the blood circulation, their heterogeneity, and their interactions with neoplastic cells and other non-neoplastic cells in the TME. We conclude with an overview of challenges in targeting these cells and discuss avenues for therapeutic exploitation to improve the dismal outcomes of patients with GBM.
Dinorah Friedmann-Morvinski, Dolores Hambardzumyan