Maralice Conacci-Sorrell, Jacob Zhurinsky, Avri Ben-Ze’ev
Yoshio Goshima, Takaaki Ito, Yukio Sasaki, Fumio Nakamura
Cord Brakebusch, Daniel Bouvard, Fabio Stanchi, Takao Sakai, Reinhard Fässler
Alvin H. Schmaier
Dominant mutations in sarcomere protein genes cause hypertrophic cardiomyopathy, an inherited human disorder with increased ventricular wall thickness, myocyte hypertrophy, and disarray. To understand the early consequences of mutant sarcomere proteins, we have studied mice (designated αMHC403/+) bearing an Arg403Gln missense mutation in the α cardiac myosin heavy chain. We demonstrate that Ca2+ is reduced in the sarcoplasmic reticulum of αMHC403/+ mice, and levels of the sarcoplasmic reticulum Ca2+-binding protein calsequestrin are diminished in advance of changes in cardiac histology or morphology. Further evidence for dysregulation of sarcoplasmic reticulum Ca2+ in these animals is seen in their decreased expression of the ryanodine receptor Ca2+-release channel and its associated membrane proteins and in an increase in ryanodine receptor phosphorylation. Early administration of the L-type Ca2+ channel inhibitor diltiazem restores normal levels of these sarcoplasmic reticular proteins and prevents the development of pathology in αMHC403/+ mice. We conclude that disruption of sarcoplasmic reticulum Ca2+ homeostasis is an important early event in the pathogenesis of this disorder and suggest that the use of Ca2+ channel blockers in advance of established clinical disease could prevent hypertrophic cardiomyopathy caused by sarcomere protein gene mutations.
Christopher Semsarian, Imran Ahmad, Michael Giewat, Dimitrios Georgakopoulos, Joachim P. Schmitt, Bradley K. McConnell, Steven Reiken, Ulrike Mende, Andrew R. Marks, David A. Kass, Christine E. Seidman, J.G. Seidman
Terminal epithelial cell differentiation is a crucial step in development. In the kidney, failure of terminal differentiation causes dysplasia, cystogenesis, and cancer. The present study provides multiple lines of evidence implicating the tumor suppressor protein p53 in terminal differentiation of the renal epithelium. In the developing kidney, p53 is highly enriched in epithelial cells expressing renal function genes (RFGs), such as receptors for vasoactive hormones, the sodium pump, and epithelial sodium and water channels. In comparison, proliferating renal progenitors express little if any p53 or RFGs. p53 binds to and transactivates the promoters of RFGs. In contrast, expression of a dominant negative mutant form of p53 inhibits endogenous RFG expression. Moreover, binding of endogenous p53 to the promoters of RFGs coincides with the differentiation process and is attenuated once renal epithelial cells are fully differentiated. Finally, p53-null pups exhibit a previously unrecognized aberrant renal phenotype and spatial disorganization of RFGs. Interestingly, the p53-related protein p73 is unable to functionally compensate for the loss of p53 and fails to efficiently activate RFG transcription. We conclude that p53 promotes the biochemical and morphological differentiation of the renal epithelium. Aberrations in p53-mediated terminal differentiation may therefore play a role in the pathogenesis of nephron dysgenesis and dysfunction.
Zubaida Saifudeen, Susana Dipp, Samir S. El-Dahr
Endothelial CD39 metabolizes ADP released from activated platelets. Recombinant soluble human CD39 (solCD39) potently inhibited ex vivo platelet aggregation in response to ADP and reduced cerebral infarct volumes in mice following transient middle cerebral artery occlusion, even when given 3 hours after stroke. Postischemic platelet and fibrin deposition were decreased and perfusion increased without increasing intracerebral hemorrhage. In contrast, aspirin did not increase postischemic blood flow or reduce infarction volume, but did increase intracerebral hemorrhage. Mice lacking the enzymatically active extracellular portion of the CD39 molecule were generated by replacement of exons 4–6 (apyrase-conserved regions 2–4) with a PGKneo cassette. Although CD39 mRNA 3′ of the neomycin cassette insertion site was detected, brains from these mice lacked both apyrase activity and CD39 immunoreactivity. Although their baseline phenotype, hematological profiles, and bleeding times were normal, cd39–/– mice exhibited increased cerebral infarct volumes and reduced postischemic perfusion. solCD39 reconstituted these mice, restoring postischemic cerebral perfusion and rescuing them from cerebral injury. These data demonstrate that CD39 exerts a protective thromboregulatory function in stroke.
David J. Pinsky, M. Johan Broekman, Jacques J. Peschon, Kim L. Stocking, Tomoyuki Fujita, Ravichandran Ramasamy, E. Sander Connolly Jr., Judy Huang, Szilard Kiss, Yuan Zhang, Tanvir F. Choudhri, Ryan A. McTaggart, Hui Liao, Joan H.F. Drosopoulos, Virginia L. Price, Aaron J. Marcus, Charles R. Maliszewski
Glucocorticoids depress bone formation by inhibiting osteoblastogenesis and increasing osteoblast apoptosis. However, the role of bone resorption in the initial rapid phase of bone loss characteristic of glucocorticoid-induced osteoporosis is unexplained, and the reason for the efficacy of bisphosphonates in this condition remains unknown. We report that in murine osteoclast cultures, glucocorticoids prolonged the baseline survival of osteoclasts and antagonized bisphosphonate-induced caspase activation and apoptosis by a glucocorticoid receptor–mediated action. Consistent with the in vitro evidence, in a murine model of glucocorticoid-induced osteoporosis, the number of cancellous osteoclasts increased, even though osteoclast progenitor number was reduced. Moreover, in mice receiving both glucocorticoids and bisphosphonates, the expected proapoptotic effect of bisphosphonates on osteoclasts was abrogated, as evidenced by maintenance of osteoclast numbers and, additionally, loss of bone density. In contrast, bisphosphonate administration prevented glucocorticoid-induced osteoblast apoptosis. These results indicate that the early loss of bone with glucocorticoid excess is caused by extension of the life span of pre-existing osteoclasts, an effect not preventable by bisphosphonates. Therefore, the early beneficial effects of these agents must be due, in part, to prolonging the life span of osteoblasts.
Robert S. Weinstein, Jin-Ran Chen, Cara C. Powers, Scott A. Stewart, Reid D. Landes, Teresita Bellido, Robert L. Jilka, A. Michael Parfitt, Stavros C. Manolagas
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin and to leptin. Importantly, DGAT1 deficiency protects against insulin resistance and obesity in agouti yellow mice, a model of severe leptin resistance. In contrast, DGAT1 deficiency did not affect energy and glucose metabolism in leptin-deficient (ob/ob) mice, possibly due in part to a compensatory upregulation of DGAT2 expression in the absence of leptin. Our results suggest that inhibition of DGAT1 may be useful in treating insulin resistance and leptin resistance in human obesity.
Hubert C. Chen, Steven J. Smith, Zuleika Ladha, Dalan R. Jensen, Luis D. Ferreira, Leslie K. Pulawa, James G. McGuire, Robert E. Pitas, Robert H. Eckel, Robert V. Farese Jr.
Heterozygosity for C1 inhibitor (C1INH) deficiency results in hereditary angioedema. Disruption of the C1INH gene by gene trapping enabled the generation of homozygous- and heterozygous-deficient mice. Mating of heterozygous-deficient mice resulted in the expected 1:2:1 ratio of wild-type, heterozygous, and homozygous-deficient offspring. C1INH-deficient mice showed no obvious phenotypic abnormality. However, following injection with Evans blue dye, both homozygous and heterozygous C1INH-deficient mice revealed increased vascular permeability in comparison with wild-type littermates. This increased vascular permeability was reversed by treatment with intravenous human C1INH, with a Kunitz domain plasma kallikrein inhibitor (DX88), and with a bradykinin type 2 receptor (Bk2R) antagonist (Hoe140). In addition, treatment of the C1INH-deficient mice with an angiotensin-converting enzyme inhibitor (captopril) increased the vascular permeability. Mice with deficiency of both C1INH and Bk2R demonstrated diminished vascular permeability in comparison with C1INH-deficient, Bk2R-sufficient mice. These data support the hypothesis that angioedema is mediated by bradykinin via Bk2R.
Eun D. Han, Ryan C. MacFarlane, Aideen N. Mulligan, Jennifer Scafidi, Alvin E. Davis III
LMX1B encodes a LIM-homeodomain transcription factor. Mutations in LMX1B cause nail-patella syndrome (NPS), an autosomal dominant disease with skeletal abnormalities, nail hypoplasia, and nephropathy. Expression of glomerular basement membrane (GBM) collagens is reduced in Lmx1b–/– mice, suggesting one basis for NPS nephropathy. Here, we show that Lmx1b–/– podocytes have reduced numbers of foot processes, are dysplastic, and lack typical slit diaphragms, indicating an arrest in development. Using antibodies to podocyte proteins important for podocyte function, we found that Lmx1b–/– podocytes express near-normal levels of nephrin, synaptopodin, ZO-1, α3 integrin, and GBM laminins. However, mRNA and protein levels for CD2AP and podocin were greatly reduced, suggesting a cooperative role for these molecules in foot process and slit diaphragm formation. We identified several LMX1B binding sites in the putative regulatory regions of both CD2AP and NPHS2 (podocin) and demonstrated that LMX1B binds to these sequences in vitro and can activate transcription through them in cotransfection assays. Thus, LMX1B regulates the expression of multiple podocyte genes critical for podocyte differentiation and function. Our results indicate that reduced levels of proteins associated with foot processes and the glomerular slit diaphragm likely contribute, along with reduced levels of GBM collagens, to the nephropathy associated with NPS.
Jeffrey H. Miner, Roy Morello, Kaya L. Andrews, Cong Li, Corinne Antignac, Andrey S. Shaw, Brendan Lee
Patients with nail-patella syndrome often suffer from a nephropathy, which ultimately results in chronic renal failure. The finding that this disease is caused by mutations in the transcription factor LMX1B, which in the kidney is expressed exclusively in podocytes, offers the opportunity for a better understanding of the renal pathogenesis. In our analysis of the nephropathy in nail-patella syndrome, we have made use of the Lmx1b knockout mouse. Transmission electron micrographs showed that glomerular development in general and the differentiation of podocytes in particular were severely impaired. The glomerular capillary network was poorly elaborated, fenestrae in the endothelial cells were largely missing, and the glomerular basement membrane was split. In addition podocytes retained a cuboidal shape and did not form foot processes and slit diaphragms. Expression of the α4 chain of collagen IV and of podocin was also severely reduced. Using gel shift assays, we demonstrated that LMX1B bound to two AT-rich sequences in the promoter region of NPHS2, the gene encoding podocin. Our results demonstrate that Lmx1b regulates important steps in glomerular development and establish a link between three hereditary kidney diseases: nail-patella syndrome (Lmx1b), steroid-resistant nephrotic syndrome (podocin), and Alport syndrome (collagen IV α4).
Claudia Rohr, Jürgen Prestel, Laurence Heidet, Hiltraud Hosser, Wilhelm Kriz, Randy L. Johnson, Corinne Antignac, Ralph Witzgall
Regulatory subunit KCNE3 (E3) interacts with KCNQ1 (Q1) in epithelia, regulating its activation kinetics and augmenting current density. Since E3 is expressed weakly in the heart, we hypothesized that ectopic expression of E3 in cardiac myocytes might abbreviate action potential duration (APD) by interacting with Q1 and augmenting the delayed rectifier current (IK). Thus, we transiently coexpressed E3 with Q1 and KCNE1 (E1) in Chinese hamster ovary cells and found that E3 coexpression increased outward current at potentials by ≥ –80 mV and accelerated activation. We then examined the changes in cardiac electrophysiology following injection of adenovirus-expressed E3 into the left ventricular cavity of guinea pigs. After 72 hours, the corrected QT interval of the electrocardiogram was reduced by ∼10%. APD was reduced by >3-fold in E3-transduced cells relative to controls, while E-4031–insensitive IK and activation kinetics were significantly augmented. Based on quantitative modeling of a transmural cardiac segment, we demonstrate that the degree of QT interval abbreviation observed results from electrotonic interactions in the face of limited transduction efficiency and that heterogeneous transduction of E3 may actually potentiate arrhythmias. Provided that fairly homogeneous ectopic ventricular expression of regulatory subunits can be achieved, this approach may be useful in enhancing repolarization and in treating long QT syndrome.
Reza Mazhari, H. Bradley Nuss, Antonis A. Armoundas, Raimond L. Winslow, Eduardo Marbán
The vitamin D receptor (VDR) is a transcription factor that mediates the actions of its ligand, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], which can promote monocyte/macrophage differentiation and inhibit proliferation and cytokine production by activated T lymphocytes. In this study, VDR knockout (KO) mice were used to investigate the possible role of VDR in hematopoiesis. The relative number of red and white peripheral blood cells and the percentage of bone marrow macrophages did not differ between VDR KO and wild-type mice. 12-O-tetradecanoylphorbol-13-acetate, but not 1,25(OH)2D3, induced differentiation of bone marrow-committed myeloid stem cells from VDR KO mice to monocytes/macrophages. Production of IL-18, a Th1-promoting cytokine, was reduced in macrophages from these mice. Antigen-stimulated spleen cells from VDR KO mice showed an impaired Th1 cell response and had decreased expression of STAT4, a Th1 cell transcription factor. These results demonstrate the absolute requirement of VDR for 1,25(OH)2D3-induced monocyte/macrophage differentiation but show that monocyte/macrophage differentiation can occur in the absence of this receptor. The observed reduction in Th1 population in these mutant mice may be explained by a loss of macrophage IL-18 production or a suppression of STAT4 expression by activated splenocytes.
James O’Kelly, Junichi Hisatake, Yasako Hisatake, June Bishop, Anthony Norman, H. Phillip Koeffler
T cells leave the thymus at a specific time during differentiation and do not return despite elaboration of known T cell chemoattractants by thymic stroma. We observed differentiation stage–restricted egress of thymocytes from an artificial thymus in which vascular structures or hemodynamics could not have been playing a role. Hypothesizing that active movement of cells away from a thymic product may be responsible, we demonstrated selective reduction in emigration from primary thymus by inhibitors of active movement down a concentration gradient (chemofugetaxis). Immature intrathymic precursors were insensitive to an emigration signal, whereas mature thymocytes and peripheral blood T cells were sensitive. Thymic stroma was noted to elaborate at least two proteins capable of inducing emigration, one of which was stromal cell–derived factor-1. Thymic emigration is mediated, at least in part, by specific fugetaxis-inducing factors to which only mature cells respond.
Mark C. Poznansky, Ivona T. Olszak, Richard H. Evans, Zhengyu Wang, Russell B. Foxall, Douglas P. Olson, Kathryn Weibrecht, Andrew D. Luster, David T. Scadden
Susceptibility to myasthenia gravis (MG) is positively linked to expression of HLA-DQ8 and DR3 molecules and negatively linked to expression of the DQ6 molecule. To elucidate the molecular basis of this association, we have induced experimental autoimmune MG (EAMG) in mice transgenic for HLA-DQ8, DQ6, and DR3, and in DQ8×DQ6 and DQ8×DR3 F1 transgenic mice, by immunization with human acetylcholine receptor (H-AChR) in CFA. Mice expressing transgenes for one or both of the HLA class II molecules positively associated with MG (DQ8 and DR3) developed EAMG. T cells from DQ8 transgenic mice responded well to three cytoplasmic peptide sequences of H-AChR (α320-337, α304-322, and α419-437), of which the response to α320-337 was the most intense. DR3 transgenic mice also responded to this sequence very strongly. H-AChR– and α320-337 peptide–specific lymphocyte responses were restricted by HLA class II molecules. Disease resistance in DQ6 transgenic mice was associated with reduced synthesis of anti-AChR IgG, IgG2b, and IgG2c Ab’s and reduced IL-2 and IFN-γ secretion by H-AChR– and peptide α320-337–specific lymphocytes. Finally, we show that DQ8 imparts susceptibility to EAMG and responsiveness to an epitope within the sequence α320-337 as a dominant trait.
Huan Yang, Elzbieta Goluszko, Chella David, David K. Okita, Bianca Conti-Fine, Teh-sheng Chan, Mathilde A. Poussin, Premkumar Christadoss