华西口腔医学杂志 ›› 2024, Vol. 42 ›› Issue (1): 1-11.doi: 10.7518/hxkq.2024.2023317
• 专家论坛 • 下一篇
收稿日期:
2023-09-22
修回日期:
2023-10-24
出版日期:
2024-02-01
发布日期:
2024-01-12
通讯作者:
沈颉飞
E-mail:shenjiefei@scu.edu.cn
作者简介:
沈颉飞,教授,博士,E-mail:基金资助:
Received:
2023-09-22
Revised:
2023-10-24
Online:
2024-02-01
Published:
2024-01-12
Contact:
Shen Jiefei
E-mail:shenjiefei@scu.edu.cn
Supported by:
摘要:
在口腔修复领域,构建虚拟患者进行数字化仿生修复展现出广阔的应用前景。虚拟患者由包含口颌面部信息的数字化素材构成,能准确地反映出口颌面结构的形态和空间关系。然而,在数字化素材的获取、精确配准过程和动态颌位关系的记录与转移中,均存在诸多挑战。本文将围绕虚拟患者的构建流程,阐述目前构建虚拟患者的关键点和难点,推动虚拟患者技术在口腔修复领域的普及和推广。
中图分类号:
沈颉飞. 口腔修复诊疗中构建虚拟患者的机遇与挑战[J]. 华西口腔医学杂志, 2024, 42(1): 1-11.
Shen Jiefei. The chance and challenge of creating virtual patients in prosthodontics[J]. West China Journal of Stomatology, 2024, 42(1): 1-11.
图 6
基于CBCT数据进行数字化颌位关系转移A:牙尖交错位的三维重建CBCT数据;B:牙尖交错位数字化口内模型;C:前伸颌位数字化口内模型;D:三维重建CBCT数据与牙尖交错位数字化口内模型配准(蓝色方框代表眶耳平面);E:牙尖交错位数字化口内模型与前伸颌位数字化口内模型配准;F:三维重建CBCT数据与前伸颌位数字化口内模型配准(黄色方框为牙尖交错位与前伸颌位的两侧髁突铰链轴的连线所在平面,代表前伸髁道参考平面);G:髁突的位置(黄色虚线代表原始的髁突位置,黄色实线代表前伸后的髁突位置);H:数字化模型配准至虚拟架上(蓝色线段代表眶耳平面,黄色线段代表前伸髁道参考平面);I:通过调整虚拟架的髁导盘测量前伸髁导斜度(黄色线段代表前伸髁道,红色虚线代表髁导盘角度)。
图 7
基于颜面部三维扫描图像进行数字化颌位关系转移A:牙尖交错位时的颜面部三维扫描图像;B:牙尖交错位数字化口内模型;C:前伸颌位数字化口内模型;D:颜面部三维扫描图像与牙尖交错位数字化口内模型配准(蓝色方框代表眶耳平面);E:牙尖交错位数字化口内模型与前伸颌位数字化口内模型配准;F:颜面部三维扫描图像与前伸颌位数字化口内模型配准(黄色平面为牙尖交错位与前伸颌位的两侧髁突铰链轴的连线所在平面,代表前伸髁道参考平面);G:髁突的位置(黄色虚线代表原始的髁突位置,黄色实线代表前伸后的髁突位置);H:数字化模型配准至虚拟架上(蓝色线段代表眶耳平面,黄色线段代表前伸髁道参考平面);I:通过调整虚拟架的髁导盘测量前伸髁导斜度(黄色线段代表前伸髁道,红色虚线代表髁导盘角度)。
1 | Joda T, Brägger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients[J]. Int J Oral Maxillofac Implants, 2015, 30(2): 330-337. |
2 | Joda T, Gallucci GO. The virtual patient in dental medicine[J]. Clin Oral Implants Res, 2015, 26(6): 725-726. |
3 | Li Q, Bi M, Yang K, et al. The creation of a virtual dental patient with dynamic occlusion and its application in esthetic dentistry[J]. J Prosthet Dent, 2021, 126(1): 14-18. |
4 | Monterubbianesi R, Tosco V, Vitiello F, et al. Augmen-ted, virtual and mixed reality in dentistry: a narrative review on the existing platforms and future challenges[J]. Appl Sci, 2022, DOI:10.3390/app12020877 . |
5 | Zimmermann R, Seitz S. The impact of technological innovation on dentistry[J]. Adv Exp Med Biol, 2023, 1406: 79-102. |
6 | Pérez-Giugovaz MG, Mostafavi D, Revilla-León M. Additively manufactured scan body for transferring a vir-tual 3-dimensional representation to a digital articulator for completely edentulous patients[J]. J Prosthet Dent, 2022, 128(6): 1171-1178. |
7 | Gateno J, Xia JJ, Teichgraeber JF, et al. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities[J]. J Oral Maxillofac Surg, 2007, 65(4): 728-734. |
8 | Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions[J]. J Prosthet Dent, 2016, 115(3): 313-320. |
9 | Dupagne L, Tapie L, Lebon N, et al. Comparison of the acquisition accuracy and digitizing noise of 9 intraoral and extraoral scanners: an objective method[J]. J Prosthet Dent, 2022, 128(5): 1032-1040. |
10 | Kernen F, Schlager S, Seidel Alvarez V, et al. Accuracy of intraoral scans: an in vivo study of different scanning devices[J]. J Prosthet Dent, 2022, 128(6): 1303-1309. |
11 | Kihara H, Hatakeyama W, Komine F, et al. Accuracy and practicality of intraoral scanner in dentistry: a literature review[J]. J Prosthodont Res, 2020, 64(2): 109-113. |
12 | Kim JE, Amelya A, Shin Y, et al. Accuracy of intraoral digital impressions using an artificial landmark[J]. J Pro-sthet Dent, 2017, 117(6): 755-761. |
13 | Conejo J, Dayo AF, Syed AZ, et al. The digital clone[J]. Dent Clin North Am, 2021, 65(3): 529-553. |
14 | Wismeijer D, Joda T, Flügge T, et al. Group 5 ITI consensus report: digital technologies[J]. Clin Oral Implants Res, 2018, 29(): 436-442. |
15 | Runkel C, Güth JF, Erdelt K, et al. Digital impressions in dentistry-accuracy of impression digitalisation by desk-top scanners[J]. Clin Oral Investig, 2020, 24(3): 1249-1257. |
16 | Borbola D, Berkei G, Simon B, et al. In vitro comparison of five desktop scanners and an industrial scanner in the evaluation of an intraoral scanner accuracy[J]. J Dent, 2023, 129: 104391. |
17 | Flügge TV, Schlager S, Nelson K, et al. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner[J]. Am J Orthod Dentofacial Orthop, 2013, 144(3): 471-478. |
18 | Mukhia N, Birur NP, Shubhasini AR, et al. Dimensional measurement accuracy of 3-dimensional models from cone beam computed tomography using different voxel sizes[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2021, 132(3): 361-369. |
19 | Sang YH, Hu HC, Lu SH, et al. Accuracy assessment of three-dimensional surface reconstructions of in vivo tee-th from cone-beam computed tomography[J]. Chin Med J (Engl), 2016, 129(12): 1464-1470. |
20 | Hilgenfeld T, Juerchott A, Deisenhofer UK, et al. In vivo accuracy of tooth surface reconstruction based on CBCT and dental MRI—A clinical pilot study[J]. Clin Oral Implants Res, 2019, 30(9): 920-927. |
21 | Karl M. In vitro studies on CAD/CAM restorations fabricated with Procera technology: an overview[J]. Quintessence Int, 2015, 46(7): 561-574. |
22 | 冯玥, 胡仲琳, 刘伟才. 三维虚拟牙科患者的建立对前牙美学修复效果的影响研究[J]. 口腔医学, 2022, 42(10): 905-910. |
Feng Y, Hu ZL, Liu WC. Study on the effect of the establishment of three-dimensional virtual dental patients on aesthetic restoration outcomes of anterior teeth[J]. Stomatology, 2022, 42(10): 905-910. | |
23 | Antonacci D, Caponio VCA, Troiano G, et al. Facial scanning technologies in the era of digital workflow: a systematic review and network meta-analysis[J]. J Pro-sthodont Res, 2023, 67(3): 321-336. |
24 | Michelinakis G, Apostolakis D, Velidakis E. An in vitro comparison of accuracy between three different face scanning modalities[J]. Eur J Prosthodont Restor Dent, 2023, 31(3): 296-307. |
25 | Mei J, Ma L, Chao J, et al. Three-dimensional analysis of the outcome of different scanning strategies in virtual interocclusal registration[J]. J Adv Prosthodont, 2022, 14(6): 369-378. |
26 | Ma L, Liu F, Mei J, et al. A comparative study to measure the sagittal condylar inclination using mechanical articulator, virtual articulator and jaw tracking device[J]. J Adv Prosthodont, 2023, 15(1): 11-21. |
27 | Naqash TA, Chaturvedi S, Yaqoob A, et al. Evaluation of sagittal condylar guidance angles using computerized pantographic tracings, protrusive interocclusal records, and 3D-CBCT imaging techniques for oral rehabilitation[J]. Niger J Clin Pract, 2020, 23(4): 550-554. |
28 | Revilla-León M, Kois DE, Zeitler JM, et al. An overview of the digital occlusion technologies: intraoral scanners, jaw tracking systems, and computerized occlusal analysis devices[J]. J Esthet Restor Dent, 2023, 35(5): 735-744. |
29 | Kwon JH, Im S, Chang M, et al. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner[J]. J Prosthodont Res, 2019, 63(1): 115-119. |
30 | Cimić S, Simunković SK, Badel T, et al. Measurements of the sagittal condylar inclination: intraindividual variations[J]. Cranio, 2014, 32(2): 104-109. |
31 | Röhrle O, Waddell JN, Foster KD, et al. Using a motion-capture system to record dynamic articulation for application in CAD/CAM software[J]. J Prosthodont, 2009, 18(8): 703-710. |
32 | Farook TH, Rashid F, Alam MK, et al. Variables in-fluencing the device-dependent approaches in digitally analysing jaw movement—a systematic review[J]. Clin Oral Investig, 2023, 27(2): 489-504. |
33 | Tian SK, Dai N, Li LL, et al. Three-dimensional mandi-bular motion trajectory-tracking system based on BP neural network[J]. Math Biosci Eng, 2020, 17(5): 5709-5726. |
34 | Revilla-León M, Raney L, Piedra-Cascón W, et al. Digital workflow for an esthetic rehabilitation using a facial and intraoral scanner and an additive manufactured silicone index: a dental technique[J]. J Prosthet Dent, 2020, 123(4): 564-570. |
35 | Lepidi L, Chen Z, Ravida A, et al. A full-digital technique to mount a maxillary arch scan on a virtual articulator[J]. J Prosthodont, 2019, 28(3): 335-338. |
36 | Jamjoom FZ, Yilmaz B, Johnston WM. Impact of number of registration points on the positional accuracy of a prosthetic treatment plan incorporated into a cone beam computed tomography scan by surface scan registration: an in vitro study[J]. Clin Oral Implants Res, 2019, 30(8): 826-832. |
37 | Chai J, Liu X, Schweyen R, et al. Accuracy of implant surgical guides fabricated using computer numerical control milling for edentulous jaws: a pilot clinical trial[J]. BMC Oral Health, 2020, 20(1): 288. |
38 | Solaberrieta E, Garmendia A, Minguez R, et al. Virtual facebow technique[J]. J Prosthet Dent, 2015, 114(6): 751-755. |
39 | 王振宇, 沈颉飞, 刘飞, 等. 一种新型面弓及其应用: 中国, 111772843A[P]. 2020-10-16. |
Wang ZY, Shen JF, Liu F, et al. A new face bow and its application: China, 111772843A[P]. 2020-10-16. | |
40 | Lam WY, Hsung RT, Choi WW, et al. A 2-part facebow for CAD-CAM dentistry[J]. J Prosthet Dent, 2016, 116(6): 843-847. |
41 | Hong SJ, Noh K. Setting the sagittal condylar inclination on a virtual articulator by using a facial and intraoral scan of the protrusive interocclusal position: a dental technique[J]. J Prosthet Dent, 2021, 125(3): 392-395. |
42 | Revilla-León M, Zandinejad A, Nair MK, et al. Accuracy of a patient 3-dimensional virtual representation obtained from the superimposition of facial and intraoral scans guided by extraoral and intraoral scan body systems[J]. J Prosthet Dent, 2022, 128(5): 984-993. |
43 | 李苏娜, 张怡, 魏青, 等. 三维冠根整合数字化模型在口腔临床中的应用研究[J]. 中国实用口腔科杂志, 2021, 14(1): 53-58. |
Li SN, Zhang Y, Wei Q, et al. Application of three-dimensional reconstruction of tooth crown and root with digital models in oral clinic[J]. Chin J Pract Stomatol, 2021, 14(1): 53-58. | |
44 | 刘涛, 金伟, 顾园颖, 等. 一种基于配准融合的三维牙齿模型重建方法[J]. 生物医学工程与临床, 2022, 26(5): 549-555. |
Liu T, Jin W, Gu YY, et al. Three-dimensional tooth model reconstruction method based on registration and integration[J]. Biomed Eng Clin Med, 2022, 26(5): 549-555. | |
45 | 邹晨, 邹道星, 艾毅龙. 口内三维扫描结合CBCT建立数字化模型的研究[J]. 口腔医学研究, 2019, 35(9): 902-905. |
Zou C, Zou DX, Ai YL. Study on three dimensional digitized dental model based on intraoral scanners and cone-beam computed tomography[J]. J Oral Sci Res, 2019, 35(9): 902-905. | |
46 | 国丹妮, 潘韶霞, 衡墨笛, 等. 应用于无牙颌种植修复设计的三维面部扫描配准方法的对比[J]. 北京大学学报(医学版), 2021, 53(1): 83-87. |
Guo DN, Pan SX, Heng MD, et al. Comparison of the registration methods for the three-dimensional facial s-cans applied to the design of full-arch implant supported restoration[J]. J Peking Univ Heal Sci, 2021, 53(1): 83-87. | |
47 | 史雨林. 骨性Ⅲ类患者正颌手术前后面部软硬组织变化的3D研究[D]. 西安: 第四军医大学, 2019. |
Shi YL. 3D research of facial soft and bone tissue chan-ges of skeletal class Ⅲ patients before and after orthognathic surgery[D]. Xi’an: Fourth Military Medical University, 2019. | |
48 | Conejo J, Dayo AF, Syed AZ, et al. The digital clone: intraoral scanning, face scans and cone beam computed tomography integration for diagnosis and treatment planning[J]. Dent Clin North Am, 2021, 65(3): 529-553. |
49 | Ahlers MO, Bernhardt O, Jakstat HA, et al. Motion analysis of the mandible: guidelines for standardized analysis of computer-assisted recording of condylar movements[J]. Int J Comput Dent, 2015, 18(3): 201-223. |
50 | Hobo S, Shillingburg HT, Whitsett LD. Articulator selection for restorative dentistry[J]. J Prosthet Dent, 1976, 36(1): 35-43. |
51 | Anderson GC, Schulte JK, Arnold TG. An in vitro study of an electronic pantograph[J]. J Prosthet Dent, 1987, 57(5): 577-580. |
52 | Lepidi L, Galli M, Mastrangelo F, et al. Virtual articu-lators and virtual mounting procedures: where do we stand[J]. J Prosthodont, 2021, 30(1): 24-35. |
53 | 马丽娅, 巢家瑞, 刘飞, 等. 基于下颌运动轨迹与虚拟的对比研究[J]. 华西口腔医学杂志, 2023, 41(3): 254-259. |
Ma LY, Chao JR, Liu F, et al. A comparative study based on the mandibular movement track and the movement parameters of the virtual articulator in simulating occlusal adjustment[J]. West China J Stomatol, 2023, 41(3): 254-259. | |
54 | Farias-Neto A, Dias AH, de Miranda BF, et al. Face-bow transfer in prosthodontics: a systematic review of the literature[J]. J Oral Rehabil, 2013, 40(9): 686-692. |
55 | Hong SJ, Choi Y, Park M, et al. Setting the sagittal condylar inclination on a virtual articulator using intraoral scan of protrusive interocclusal position and cone beam computed tomography[J]. J Prosthodont, 2020, 29(2): 185-189. |
56 | Lepidi L, Suriano C, Wang HL, et al. Digital fixed complete-arch rehabilitation: from virtual articulator mounting to clinical delivery[J]. J Prosthet Dent, 2022, 127(3): 398-403. |
57 | Levine JP, Patel A, Saadeh PB, et al. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art[J]. J Craniofac Surg, 2012, 23(1): 288-293. |
58 | Azarmehr I, Stokbro K, Bell RB, et al. Surgical navigation: a systematic review of indications, treatments, and outcomes in oral and maxillofacial surgery[J]. J Oral Maxillofac Surg, 2017, 75(9): 1987-2005. |
59 | Wang Z, Chen J, Hoi SCH. Deep learning for image super-resolution: a survey[J]. IEEE Trans Pattern Anal Ma-ch Intell, 2021, 43(10): 3365-3387. |
60 | Lai WS, Huang JB, Ahuja N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(11): 2599-2613. |
61 | Heo MS, Kim JE, Hwang JJ, et al. Artificial intelligen-ce in oral and maxillofacial radiology: what is currently possible[J]. Dentomaxillofac Radiol, 2020, 50(3): 20-200375. |
[1] | 周哲青, 王思谕, 袁泉, 岳莉, 杨胜涛. 一种全数字化前伸髁导斜度测量方法的准确性研究[J]. 华西口腔医学杂志, 2024, 42(1): 67-74. |
[2] | 于海洋. 关于牙体预备里的数字追问——从目测经验类比到数字引导[J]. 华西口腔医学杂志, 2021, 39(1): 9-19. |
[3] | 陈昕, 毛渤淳, 解晨阳, 张倩倩, 孙纪奎, 岳莉, 于海洋. 一种逐次多级专家系统辅助的可摘局部义齿支架修复技术[J]. 华西口腔医学杂志, 2020, 38(4): 475-478. |
[4] | 耿奉雪 殷家悦. TTB机械比色训练系统应用于口腔修复教学的考量[J]. 华西口腔医学杂志, 2011, 29(06): 629-632. |
[5] | 冯晋 于海洋. 2317例定制式固定义齿工作授权书调查研究[J]. 华西口腔医学杂志, 2009, 27(04): 390-393. |
[6] | 翟浚江 梁星 丁浩 张琪 李婷. 患者口腔义齿修复的认知调查[J]. 华西口腔医学杂志, 2009, 27(01): 53-57. |
[7] | . 口腔修复新技术、新观念、新知识、新进展专题研讨会通知[J]. 华西口腔医学杂志, 2002, 20(06): 407-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||