forked from Everlyn-Labs/Wasserstein-VQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_wasserstein_quantizer.py
311 lines (264 loc) · 16.4 KB
/
train_wasserstein_quantizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import gc
import os
import shutil
import sys
import time
import warnings
import numpy as np
import torch
from torch import nn, optim
import math
import json
import random
import scipy.io as sio
from torch.nn import functional as F
from scipy.io import savemat
import pandas as pd
from torch.utils.data import DataLoader
from tqdm import tqdm
import torchvision
from data.dataloader import build_dataloader
import torchvision.models as torchvision_models
from torchvision import models, datasets, transforms
from utils import dist
from torch import distributed as tdist
from utils.util import NativeScalerWithGradNormCount as NativeScaler
import config
from utils.util import Logger, LossManager, Pack, adjust_learning_rate
from data import dataloader
from model.vqvae import VQVAE
from metric.metric import PSNR, LPIPS, SSIM
## calculation (codebook_utilization, wasserstein distance, level_quantization_error)
## (rec_loss, PSNR, SSIM)
def eval_one_epoch(args, model, epoch, val_dataloader, len_val_set):
model.eval()
psnr_metric = PSNR()
ssim_metric = SSIM()
lpips_metric = LPIPS()
ssim, psnr, lpips, rec_loss_scalar, wasserstein_distance_scalar, codebook_utilization, perplexity, total_num = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0
quant_error = [0.0 for i in range(len(args.ms_token_size))]
commit_error = [0.0 for i in range(len(args.ms_token_size))]
codebook_histogram_all: torch.Tensor = 0.0
for step, (x, _) in enumerate(val_dataloader):
x = x.cuda(dist.get_local_rank(), non_blocking=True)
batch_size = x.size(0)
total_num += batch_size
with torch.no_grad():
x_rec, rec_loss, wasserstein_distance, codebook_histogram, level_quant_error, level_commit_error = model.module.collect_eval_info(x)
codebook_histogram_all += codebook_histogram
batch_lpips = lpips_metric(x, x_rec).sum()
x_norm = (x + 1.0)/2.0
x_rec_norm = (x_rec + 1.0)/2.0
batch_psnr = psnr_metric(x_norm, x_rec_norm).sum()
batch_ssim = ssim_metric(x_norm, x_rec_norm).sum()
if dist.initialized():
handler1 = tdist.all_reduce(batch_lpips, async_op=True)
handler2 = tdist.all_reduce(batch_psnr, async_op=True)
handler3 = tdist.all_reduce(batch_ssim, async_op=True)
handler1.wait()
handler2.wait()
handler3.wait()
if dist.is_local_master():
ssim += batch_ssim.item()
psnr += batch_psnr.item()
lpips += batch_lpips.item()
wasserstein_distance_scalar += wasserstein_distance.item() * batch_size
rec_loss_scalar += rec_loss.item() * batch_size
for i in range(len(args.ms_token_size)):
quant_error[i] += level_quant_error[i].data.cpu().item() * batch_size
commit_error[i] += level_commit_error[i].data.cpu().item() * batch_size
codebook_usage_counts = (codebook_histogram_all > 0).float().sum()
codebook_utilization = codebook_usage_counts.item() / args.codebook_size
avg_probs = codebook_histogram_all/codebook_histogram_all.sum(0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
eval_psnr = psnr/len_val_set
eval_ssim = ssim/len_val_set
eval_lpips = lpips/len_val_set
eval_codebook_utilization = codebook_utilization
eval_perplexity = perplexity.item()
eval_rec_loss = rec_loss_scalar/total_num
eval_wasserstein_distance = wasserstein_distance_scalar/total_num
for i in range(len(args.ms_token_size)):
quant_error[i] = quant_error[i]/total_num
commit_error[i] = commit_error[i]/total_num
model.train()
return Pack(psnr=eval_psnr, ssim=eval_ssim, lpips=eval_lpips, codebook_utilization=eval_codebook_utilization, perplexity=eval_perplexity, rec_loss=eval_rec_loss, wasserstein_distance=eval_wasserstein_distance, quant_error=quant_error, commit_error=commit_error)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def main_worker(args):
torch.cuda.set_device(dist.get_local_rank())
model = VQVAE(args)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.cuda(dist.get_local_rank())
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[dist.get_local_rank()], find_unused_parameters=True, broadcast_buffers=True)
ae_para = list(model.module.encoder.parameters()) + list(model.module.decoder.parameters()) + list(model.module.quant_conv.parameters()) + list(model.module.post_quant_conv.parameters())
opt_ae = torch.optim.Adam(ae_para, lr=args.ae_lr, betas=(0.5, 0.9), eps=1e-7)
disc_para = list(model.module.discriminator.parameters())
opt_disc = torch.optim.Adam(disc_para, lr=args.ae_lr, betas=(0.5, 0.9), eps=1e-7)
loss_scaler_ae = NativeScaler()
loss_scaler_disc = NativeScaler()
train_dataloader, val_dataloader, train_sampler, len_train_set, len_val_set = build_dataloader(args)
start_epoch = 1
if args.resume:
print("reloading model...")
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint-'+ args.saver_name_pre +'-resume'+'.pth.tar')
loc = 'cuda:{}'.format(dist.get_local_rank())
checkpoint = torch.load(checkpoint_path, map_location=loc)
start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['model'])
opt_ae.load_state_dict(checkpoint['opt_ae'])
opt_disc.load_state_dict(checkpoint['opt_disc'])
loss_scaler_ae.load_state_dict(checkpoint["scaler_ae"])
loss_scaler_disc.load_state_dict(checkpoint["scaler_disc"])
args = checkpoint['args']
if dist.is_local_master():
print("=> loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
results = {'ae_loss':[], 'rec_loss': [], 'commit_loss':[], 'vq_loss':[], 'lpips_loss':[], 'wasserstein_loss':[], 'd_loss':[], 'g_loss':[], 'perplexity':[], 'codebook_utilization':[], \
'quant_1':[], 'quant_2':[], 'quant_3':[], 'quant_4':[], 'quant_5':[], 'quant_6':[], 'quant_7':[], 'quant_8':[], 'quant_9':[], 'quant_10':[]}
results_eval = {'epoch':[], 'psnr':[], 'ssim':[], 'lpips': [], 'codebook_utilization':[], 'perplexity':[], 'rec_loss':[], 'wasserstein_distance':[], \
'quant_1':[], 'quant_2':[], 'quant_3':[], 'quant_4':[], 'quant_5':[], 'quant_6':[], 'quant_7':[], 'quant_8':[], 'quant_9':[], 'quant_10':[], \
'commit_1':[], 'commit_2':[], 'commit_3':[], 'commit_4':[], 'commit_5':[], 'commit_6':[], 'commit_7':[], 'commit_8':[], 'commit_9':[], 'commit_10':[]}
train_loss = LossManager()
best_psnr, current_psnr = 0.0, 0.0
results_val_index = 1
print("Start training...")
for epoch in range(start_epoch, args.epochs+1):
train_sampler.set_epoch(epoch)
print("epoch:%d, ae_lr:%4f"%(epoch, opt_ae.param_groups[0]["lr"]))
print("epoch:%d, disc_lr:%4f"%(epoch, opt_disc.param_groups[0]["lr"]))
iters_per_epoch = len(train_dataloader)
ae_loss_scalar, rec_loss, vq_loss, commit_loss, lpips_loss, wasserstein_loss, d_loss_scalar, g_loss, perplexity, codebook_utilization, total_num = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0
level_quant_error = [0.0 for i in range(len(args.ms_token_size))]
model.train()
start_time = time.time()
for step, (x, _) in enumerate(train_dataloader):
cur_iter = len(train_dataloader) * (epoch-1) + step
cur_epoch = cur_iter/len(train_dataloader)
x = x.cuda(dist.get_local_rank(), non_blocking=True)
batch_size = x.size(0)
ae_loss, loss_pack, level_quantization_error = model(x, cur_iter, step=0)
opt_ae.zero_grad()
adjust_learning_rate(opt_ae, cur_epoch, args)
loss_scaler_ae(ae_loss, opt_ae, parameters=ae_para, update_grad=True)
if cur_iter > args.disc_start:
d_loss, loss_pack2 = model(x, cur_iter, step=1)
opt_disc.zero_grad()
adjust_learning_rate(opt_disc, cur_epoch, args)
loss_scaler_disc(d_loss, opt_disc, parameters=disc_para, update_grad=True)
loss_pack.add(loss_pack2)
else:
d_loss = torch.zeros(1)
torch.cuda.synchronize()
train_loss.add_loss(loss_pack)
if dist.is_local_master():
total_num += batch_size
ae_loss_scalar += loss_pack.ae_loss.item() * batch_size
d_loss_scalar += d_loss.item() * batch_size
rec_loss += loss_pack.rec_loss.item() * batch_size
commit_loss += loss_pack.commit_loss.item() * batch_size
vq_loss += loss_pack.vq_loss.item() * batch_size
g_loss += loss_pack.g_loss.item() * batch_size
lpips_loss += loss_pack.lpips_loss.item() * batch_size
wasserstein_loss += loss_pack.wasserstein_loss.item() * batch_size
perplexity += loss_pack.perplexity.item() * batch_size
codebook_utilization += loss_pack.codebook_utilization * batch_size
for i in range(len(args.ms_token_size)):
level_quant_error[i] += level_quantization_error[i].cpu().item() * batch_size
if dist.is_local_master() and (step+1) %10 ==0:
print(train_loss.pprint(window=50, prefix='Train Epoch: [{}/{}] Iters:[{}/{}]'.format(epoch, args.epochs, step+1, len(train_dataloader))))
train_loss.clear()
######################### start conducting statistical analysis per epoch on training dataset ##########
print("######### start conducting statistical analysis per epoch on training dataset #########")
if dist.is_local_master():
results['ae_loss'].append(ae_loss_scalar/total_num)
results['rec_loss'].append(rec_loss/total_num)
results['commit_loss'].append(commit_loss/total_num)
results['vq_loss'].append(vq_loss/total_num)
results['lpips_loss'].append(lpips_loss/total_num)
results['d_loss'].append(d_loss_scalar/total_num)
results['g_loss'].append(g_loss/total_num)
results['wasserstein_loss'].append(wasserstein_loss/total_num)
results['perplexity'].append(perplexity/total_num)
results['codebook_utilization'].append(codebook_utilization/total_num)
for i in range(len(args.ms_token_size)):
level_quant_error[i] = level_quant_error[i]/total_num
results['quant_1'].append(level_quant_error[0])
results['quant_2'].append(level_quant_error[1])
results['quant_3'].append(level_quant_error[2])
results['quant_4'].append(level_quant_error[3])
results['quant_5'].append(level_quant_error[4])
results['quant_6'].append(level_quant_error[5])
results['quant_7'].append(level_quant_error[6])
results['quant_8'].append(level_quant_error[7])
results['quant_9'].append(level_quant_error[8])
results['quant_10'].append(level_quant_error[9])
#save statistics
data_frame = pd.DataFrame(data=results, index=range(1, epoch + 1))
data_frame.to_csv('{}/train_{}_statistics.csv'.format(args.results_dir, args.saver_name_pre), index_label='epoch')
print("######### save checkpoint of each epoch #########")
if dist.is_local_master() and epoch%10 == 0:
model.train()
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint-'+args.saver_name_pre+'-'+str(epoch)+'.pth.tar')
save_checkpoint({'epoch': epoch, 'model': model.state_dict(), 'opt_ae': opt_ae.state_dict(), 'opt_disc': opt_disc.state_dict(), 'scaler_ae': loss_scaler_ae.state_dict(), 'scaler_disc': loss_scaler_disc.state_dict(), 'args': args}, is_best=False, filename=checkpoint_path)
if epoch%10 == 0:
print("######### start evaluation per 10 epoch #########")
with torch.no_grad():
results_pack = eval_one_epoch(args, model, epoch, val_dataloader, len_val_set)
if dist.is_local_master() and epoch%10 == 0:
results_eval['epoch'].append(epoch)
results_eval['psnr'].append(results_pack.psnr)
results_eval['ssim'].append(results_pack.ssim)
results_eval['lpips'].append(results_pack.lpips)
results_eval['codebook_utilization'].append(results_pack.codebook_utilization)
results_eval['perplexity'].append(results_pack.perplexity)
results_eval['rec_loss'].append(results_pack.rec_loss)
results_eval['wasserstein_distance'].append(results_pack.wasserstein_distance)
results_eval['quant_1'].append(results_pack.quant_error[0])
results_eval['quant_2'].append(results_pack.quant_error[1])
results_eval['quant_3'].append(results_pack.quant_error[2])
results_eval['quant_4'].append(results_pack.quant_error[3])
results_eval['quant_5'].append(results_pack.quant_error[4])
results_eval['quant_6'].append(results_pack.quant_error[5])
results_eval['quant_7'].append(results_pack.quant_error[6])
results_eval['quant_8'].append(results_pack.quant_error[7])
results_eval['quant_9'].append(results_pack.quant_error[8])
results_eval['quant_10'].append(results_pack.quant_error[9])
results_eval['commit_1'].append(results_pack.commit_error[0])
results_eval['commit_2'].append(results_pack.commit_error[1])
results_eval['commit_3'].append(results_pack.commit_error[2])
results_eval['commit_4'].append(results_pack.commit_error[3])
results_eval['commit_5'].append(results_pack.commit_error[4])
results_eval['commit_6'].append(results_pack.commit_error[5])
results_eval['commit_7'].append(results_pack.commit_error[6])
results_eval['commit_8'].append(results_pack.commit_error[7])
results_eval['commit_9'].append(results_pack.commit_error[8])
results_eval['commit_10'].append(results_pack.commit_error[9])
#save reconstruction_performance results
data_frame = pd.DataFrame(data=results_eval, index=range(1, results_val_index+1))
data_frame.to_csv('{}/eval_{}_rec_results.csv'.format(args.results_dir, args.saver_name_pre), index_label='index')
results_val_index += 1
############################## start evaluation per epoch
current_psnr = results_pack.psnr
if current_psnr >= best_psnr:
model.train()
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint-'+args.saver_name_pre+'-best'+'.pth.tar')
save_checkpoint({'epoch': epoch, 'model': model.state_dict(), 'opt_ae': opt_ae.state_dict(), 'opt_disc': opt_disc.state_dict(), 'scaler_ae': loss_scaler_ae.state_dict(), 'scaler_disc': loss_scaler_disc.state_dict(), 'args': args}, is_best=False, filename=checkpoint_path)
best_psnr = max(best_psnr, current_psnr)
print("best_psnr:{}, current_psnr:{}".format(best_psnr, current_psnr))
print("######### start saving final checkpoint #########")
model.train()
if dist.is_local_master():
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint-'+args.saver_name_pre+'-final'+'.pth.tar')
save_checkpoint({'epoch': epoch, 'model': model.state_dict(), 'opt_ae': opt_ae.state_dict(), 'opt_disc': opt_disc.state_dict(), 'scaler_ae': loss_scaler_ae.state_dict(), 'scaler_disc': loss_scaler_disc.state_dict(), 'args': args}, is_best=False, filename=checkpoint_path)
if __name__ == '__main__':
dist.initialize(fork=False, timeout=30)
dist.barrier()
args = config.parse_arg()
dict_args = vars(args)
sys.stdout = Logger(args.saver_dir, args.saver_name_pre)
if dist.is_local_master():
for k, v in zip(dict_args.keys(), dict_args.values()):
print("{0}: {1}".format(k, v))
main_worker(args)