-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
156 lines (128 loc) · 5.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import sys
import librosa
import numpy as np
import soundfile as sf
import functools
import torch
from torch.nn.functional import cosine_similarity
from correloss import corre_loss
def logme(f):
@functools.wraps(f)
def wrapped(*args, **kwargs):
print('\n-----------------\n')
print(' MODEL: {}'.format(f.__name__.upper()))
print('\n-----------------\n')
return f(*args, **kwargs)
return wrapped
class ProgressBar:
"""Progress bar
"""
def __init__ (self, valmax, maxbar, title):
if valmax == 0: valmax = 1
if maxbar > 200: maxbar = 200
self.valmax = valmax
self.maxbar = maxbar
self.title = title
print ('')
def update(self, val, avg_loss=0):
# format
if val > self.valmax: val = self.valmax
# process
perc = round((float(val) / float(self.valmax)) * 100)
scale = 100.0 / float(self.maxbar)
bar = int(perc / scale)
# render
if avg_loss:
# out = '\r %20s [%s%s] %3d / %3d cost: %.2f r_loss: %.0f l_loss: %.4f clf_loss: %.4f' % (
out = '\r %20s [%s%s] %3d / %3d loss: %.5f' % (
self.title,
'=' * bar, ' ' * (self.maxbar - bar),
val,
self.valmax,
avg_loss,
)
else:
out = '\r %20s [%s%s] %3d / %3d ' % (self.title, '=' * bar, ' ' * (self.maxbar - bar), val, self.valmax)
sys.stdout.write(out)
sys.stdout.flush()
def pad(l, sr):
# 0-Pad 10 sec at fs hz and add little noise
z = np.zeros(10*sr, dtype='float32')
z[:l.size] = l
z = z + 5*1e-4*np.random.rand(z.size).astype('float32')
return z
def compute_spectrogram(filename, sr=22000, n_mels=96):
# zero pad and compute log mel spec
try:
audio, sr = librosa.load(filename, sr=sr, res_type='kaiser_fast')
except:
audio, o_sr = sf.read(filename)
audio = librosa.core.resample(audio, o_sr, sr)
try:
x = pad(audio, sr)
except ValueError:
x = audio
audio_rep = librosa.feature.melspectrogram(y=x, sr=sr, hop_length=512, n_fft=1024, n_mels=n_mels, power=1.)
audio_rep = np.log(audio_rep + np.finfo(np.float32).eps)
return audio_rep
def return_spectrogram_max_nrg_frame(spectrogram):
frames = librosa.util.frame(np.asfortranarray(spectrogram), frame_length=96, hop_length=12)
idx_max_nrg = np.argmax(np.sum(np.sum(frames, axis=0), axis=0))
return frames[:,:,idx_max_nrg]
def return_spectrogram_3_max_nrg_frames(spectrogram):
frames = librosa.util.frame(np.asfortranarray(spectrogram), frame_length=96, hop_length=12)
idxes_max_nrg = (-np.sum(np.sum(frames, axis=0), axis=0)).argsort()[:3]
return frames[:,:,idxes_max_nrg]
def spectrogram_to_audio(filename, y, sr=22000):
y = np.exp(y)
x = librosa.feature.inverse.mel_to_audio(y, sr=sr, n_fft=1024, hop_length=512, power=1.)
librosa.output.write_wav(filename, x, sr)
def kullback_leibler(y_hat, y):
"""Generalized Kullback Leibler divergence.
:param y_hat: The predicted distribution.
:type y_hat: torch.Tensor
:param y: The true distribution.
:type y: torch.Tensor
:return: The generalized Kullback Leibler divergence\
between predicted and true distributions.
:rtype: torch.Tensor
"""
return (y * (y.add(1e-5).log() - y_hat.add(1e-5).log()) + (y_hat - y)).sum(dim=-1).mean()
def embeddings_to_cosine_similarity_matrix(z):
"""Converts a a tensor of n embeddings to an (n, n) tensor of similarities.
"""
cosine_similarity = torch.matmul(z, z.t())
embedding_norms = torch.norm(z, p=2, dim=1)
embedding_norms_mat = embedding_norms.unsqueeze(0)*embedding_norms.unsqueeze(1)
cosine_similarity = cosine_similarity / (embedding_norms_mat)
return cosine_similarity
def contrastive_loss(z_audio, z_tag, t=1):
"""Computes contrastive loss following the paper:
A Simple Framework for Contrastive Learning of Visual Representations
https://arxiv.org/pdf/2002.05709v1.pdf
TODO: make it robust to NaN (with low values of t it happens).
e.g Cast to double float for exp calculation.
"""
z = torch.cat((z_audio, z_tag), dim=0)
s = embeddings_to_cosine_similarity_matrix(z)
N = int(s.shape[0]/2)
s = torch.exp(s/t)
try:
s = s * (1 - torch.eye(len(s), len(s)).cuda())
# s[range(len(s)), range(len(s))] = torch.zeros((len(s),)).cuda()
except AssertionError:
s = s * (1 - torch.eye(len(s), len(s)))
denom = s.sum(dim=-1)
num = torch.cat((s[:N,N:].diag(), s[N:,:N].diag()), dim=0)
return torch.log((num / denom) + 1e-5).neg().mean()
def contrastive_corr_loss(z_audio, z_tag, t=1):
s = corre_loss(z_audio, z_tag)
N = int(s.shape[0]/2)
try:
s = s * (1 - torch.eye(len(s), len(s)).cuda())
# s[range(len(s)), range(len(s))] = torch.zeros((len(s),)).cuda()
except AssertionError:
s = s * (1 - torch.eye(len(s), len(s)))
denom = s.sum(dim=-1)
num = torch.cat((s[:N,N:].diag(), s[N:,:N].diag()), dim=0)
return torch.log((num / denom) + 1e-5).neg().mean()