-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_utils.py
57 lines (45 loc) · 2.26 KB
/
mnist_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gzip, struct, random
import numpy as np
def one_hot_10(x):
r = np.zeros((x.shape[0], 10))
for i in range(x.shape[0]):
r[i, x[i]] = 1
return r.astype(np.uint8)
def load_mnist(dir):
with gzip.open('{}/train-labels-idx1-ubyte.gz'.format(dir)) as f:
magic, num = struct.unpack(">II", f.read(8))
train_labels = np.fromstring(f.read(), dtype=np.int8)
with gzip.open('{}/train-images-idx3-ubyte.gz'.format(dir)) as f:
magic, num, rows, cols = struct.unpack(">IIII", f.read(16))
train_images = np.fromstring(f.read(), dtype=np.uint8).reshape(num, rows, cols, 1)
with gzip.open('{}/t10k-labels-idx1-ubyte.gz'.format(dir)) as f:
magic, num = struct.unpack(">II", f.read(8))
test_labels = np.fromstring(f.read(), dtype=np.int8)
with gzip.open('{}/t10k-images-idx3-ubyte.gz'.format(dir)) as f:
magic, num, rows, cols = struct.unpack(">IIII", f.read(16))
test_images = np.fromstring(f.read(), dtype=np.uint8).reshape(num, rows, cols, 1)
return train_images / 255.0, one_hot_10(train_labels), test_images / 255.0, one_hot_10(test_labels)
loaded = False
train_images, train_labels, cv_images, cv_labels, test_images, test_labels = None, None, None, None, None, None
def get_batch(batch_size=16, dataset='train'):
global loaded, train_images, train_labels, cv_images, cv_labels, test_images, test_labels
if not loaded:
train_images, train_labels, test_images, test_labels = load_mnist('./datasets/MNIST')
cv_images, cv_labels = train_images[:10000], train_labels[:10000]
train_images, train_labels = train_images[10000:], train_labels[10000:]
loaded = True
if dataset == 'train':
idx = random.randint(0, train_images.shape[0] - batch_size)
return train_images[idx:idx+batch_size].copy(), train_labels[idx:idx+batch_size].copy()
elif dataset == 'cv':
return cv_images, cv_labels
elif dataset == 'test':
return test_images, test_labels
else:
return None, None
def cal_loss(true, pred, model):
n = true.shape[0]
entropy_loss = -np.sum(true * np.log(pred) + (1 - true) * np.log(1 - pred)) / n
l2_loss = model.get_l2_loss() / n
loss = entropy_loss + l2_loss
return loss, entropy_loss, l2_loss