forked from JNingWei/Image_Filter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
256 lines (201 loc) · 9.65 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# -*- coding: utf-8 -*-
import numpy as np
def Naive_Filter():
# 原图 Naive Filter
filter_0 = np.array([[[0,0,0],[0,0,0],[0,0,0]],
[[0,0,0],[1,0,0],[0,0,0]],
[[0,0,0],[0,0,0],[0,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,0,0],[0,0,0],[0,0,0]],
[[0,0,0],[0,1,0],[0,0,0]],
[[0,0,0],[0,0,0],[0,0,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,0],[0,0,0],[0,0,0]],
[[0,0,0],[0,0,1],[0,0,0]],
[[0,0,0],[0,0,0],[0,0,0]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Sharpness_Center_Filter():
# 中心锐化 Sharpness_Center Filter
filter_0 = np.array([[[-1,0,0],[-1,0,0],[-1,0,0]],
[[-1,0,0],[9,0,0],[-1,0,0]],
[[-1,0,0],[-1,0,0],[-1,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,-1,0],[0,-1,0],[0,-1,0]],
[[0,-1,0],[0,9,0],[0,-1,0]],
[[0,-1,0],[0,-1,0],[0,-1,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,-1],[0,0,-1],[0,0,-1]],
[[0,0,-1],[0,0,9],[0,0,-1]],
[[0,0,-1],[0,0,-1],[0,0,-1]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Sharpness_Edge_Filter():
# 边缘锐化滤波器 Sharpness_Edge Filter
filter_0 = np.array([[[1,0,0],[1,0,0],[1,0,0]],
[[1,0,0],[-7,0,0],[1,0,0]],
[[1,0,0],[1,0,0],[1,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,1,0],[0,1,0],[0,1,0]],
[[0,1,0],[0,-7,0],[0,1,0]],
[[0,1,0],[0,1,0],[0,1,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,1],[0,0,1],[0,0,1]],
[[0,0,1],[0,0,-7],[0,0,1]],
[[0,0,1],[0,0,1],[0,0,1]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Edge_Detection_360_degree_Filter():
# 360度边缘检测 Edge_Detection_360_degree Filter
filter_0 = np.array([[[-1,0,0],[-1,0,0],[-1,0,0]],
[[-1,0,0],[8,0,0],[-1,0,0]],
[[-1,0,0],[-1,0,0],[-1,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,-1,0],[0,-1,0],[0,-1,0]],
[[0,-1,0],[0,8,0],[0,-1,0]],
[[0,-1,0],[0,-1,0],[0,-1,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,-1],[0,0,-1],[0,0,-1]],
[[0,0,-1],[0,0,8],[0,0,-1]],
[[0,0,-1],[0,0,-1],[0,0,-1]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Edge_Detection_45_degree_Filter():
# 45度边缘检测 Edge_Detection_45_degree Filter
filter_0 = np.array([[[-1,0,0],[0,0,0],[0,0,0]],
[[0,0,0],[2,0,0],[0,0,0]],
[[0,0,0],[0,0,0],[-1,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,-1,0],[0,0,0],[0,0,0]],
[[0,0,0],[0,2,0],[0,0,0]],
[[0,0,0],[0,0,0],[0,-1,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,-1],[0,0,0],[0,0,0]],
[[0,0,0],[0,0,2],[0,0,0]],
[[0,0,0],[0,0,0],[0,0,-1]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Embossing_45_degree_Filter():
# 45度浮雕 Embossing_45_degree Filter
filter_0 = np.array([[[-1,0,0],[-1,0,0],[0,0,0]],
[[-1,0,0],[1,0,0],[1,0,0]],
[[0,0,0],[1,0,0],[1,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,-1,0],[0,-1,0],[0,0,0]],
[[0,-1,0],[0,1,0],[0,1,0]],
[[0,0,0],[0,1,0],[0,1,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,-1],[0,0,-1],[0,0,0]],
[[0,0,-1],[0,0,1],[0,0,1]],
[[0,0,0],[0,0,1],[0,0,1]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Embossing_Asymmetric_Filter():
# 非对称浮雕 Embossing_Asymmetric Filter
filter_0 = np.array([[[2,0,0],[0,0,0],[0,0,0]],
[[0,0,0],[-1,0,0],[0,0,0]],
[[0,0,0],[0,0,0],[-1,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,2,0],[0,0,0],[0,0,0]],
[[0,0,0],[0,-1,0],[0,0,0]],
[[0,0,0],[0,0,0],[0,-1,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,2],[0,0,0],[0,0,0]],
[[0,0,0],[0,0,-1],[0,0,0]],
[[0,0,0],[0,0,0],[0,0,-1]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Averaging_Blur_Filter():
# 均值模糊 Averaging_Blur Filter
filter_0 = np.array([[[0,0,0],[0.25,0,0],[0,0,0]],
[[0.25,0,0],[0,0,0],[0.25,0,0]],
[[0,0,0],[0.25,0,0],[0,0,0]]],
dtype=np.float)
filter_1 = np.array([[[0,0,0],[0,0.25,0],[0,0,0]],
[[0,0.25,0],[0,0,0],[0,0.25,0]],
[[0,0,0],[0,0.25,0],[0,0,0]]],
dtype=np.float)
filter_2 = np.array([[[0,0,0],[0,0,0.25],[0,0,0]],
[[0,0,0.25],[0,0,0],[0,0,0.25]],
[[0,0,0],[0,0,0.25],[0,0,0]]],
dtype=np.float)
return filter_0, filter_1, filter_2
def Completed_Blur_Filter():
# Completed_均值模糊 Completed_Blur Filter
filter_0 = np.array([[[1.0/9,0,0],[1.0/9,0,0],[1.0/9,0,0]],
[[1.0/9,0,0],[1.0/9,0,0],[1.0/9,0,0]],
[[1.0/9,0,0],[1.0/9,0,0],[1.0/9,0,0]]],
dtype=np.float)
filter_1 = np.array([[[0,1.0/9,0],[0,1.0/9,0],[0,1.0/9,0]],
[[0,1.0/9,0],[0,1.0/9,0],[0,1.0/9,0]],
[[0,1.0/9,0],[0,1.0/9,0],[0,1.0/9,0]]],
dtype=np.float)
filter_2 = np.array([[[0,0,1.0/9],[0,0,1.0/9],[0,0,1.0/9]],
[[0,0,1.0/9],[0,0,1.0/9],[0,0,1.0/9]],
[[0,0,1.0/9],[0,0,1.0/9],[0,0,1.0/9]]],
dtype=np.float)
return filter_0, filter_1, filter_2
def Motion_Blur_Filter():
# Motion_Blur Filter
filter_0 = np.array([[[1,0,0],[0,0,0],[0,0,0]],
[[0,0,0],[1,0,0],[0,0,0]],
[[0,0,0],[0,0,0],[1,0,0]]],
dtype=np.int16)
filter_1 = np.array([[[0,1,0],[0,0,0],[0,0,0]],
[[0,0,0],[0,1,0],[0,0,0]],
[[0,0,0],[0,0,0],[0,1,0]]],
dtype=np.int16)
filter_2 = np.array([[[0,0,1],[0,0,0],[0,0,0]],
[[0,0,0],[0,0,1],[0,0,0]],
[[0,0,0],[0,0,0],[0,0,1]]],
dtype=np.int16)
return filter_0, filter_1, filter_2
def Gaussian_Blur_Filter():
# 高斯模糊 Gaussian_Blur Filter
filter_0 = np.array([[[1.0/36,0,0],[4.0/36,0,0],[1.0/36,0,0]],
[[4.0/36,0,0],[16.0/36,0,0],[4.0/36,0,0]],
[[1.0/36,0,0],[4.0/36,0,0],[1.0/36,0,0]]],
dtype=np.float)
filter_1 = np.array([[[0,1.0/36,0],[0,4.0/36,0],[0,1.0/36,0]],
[[0,4.0/36,0],[0,16.0/36,0],[0,4.0/36,0]],
[[0,1.0/36,0],[0,4.0/36,0],[0,1.0/36,0]]],
dtype=np.float)
filter_2 = np.array([[[0,0,1.0/36],[0,0,4.0/36],[0,0,1.0/36]],
[[0,0,4.0/36],[0,0,16.0/36],[0,0,4.0/36]],
[[0,0,1.0/36],[0,0,4.0/36],[0,0,1.0/36]]],
dtype=np.float)
return filter_0, filter_1, filter_2
def None_Exist_Filter():
# None_Exist Filter
filter_0 = np.zeros((3,3,3), dtype=np.float)
filter_1 = np.zeros((3,3,3), dtype=np.float)
filter_2 = np.zeros((3,3,3), dtype=np.float)
return filter_0, filter_1, filter_2
def Filter(filter_name):
# Choose which group of filters to be returned
if filter_name == 'Naive':
filter_0, filter_1, filter_2 = Naive_Filter()
elif filter_name == 'Sharpness_Center':
filter_0, filter_1, filter_2 = Sharpness_Center_Filter()
elif filter_name == 'Sharpness_Edge':
filter_0, filter_1, filter_2 = Sharpness_Edge_Filter()
elif filter_name == 'Edge_Detection_360_degree':
filter_0, filter_1, filter_2 = Edge_Detection_360_degree_Filter()
elif filter_name == 'Edge_Detection_45_degree':
filter_0, filter_1, filter_2 = Edge_Detection_45_degree_Filter()
elif filter_name == 'Embossing_45_degree':
filter_0, filter_1, filter_2 = Embossing_45_degree_Filter()
elif filter_name == 'Embossing_Asymmetric':
filter_0, filter_1, filter_2 = Embossing_Asymmetric_Filter()
elif filter_name == 'Averaging_Blur':
filter_0, filter_1, filter_2 = Averaging_Blur_Filter()
elif filter_name == 'Completed_Blur':
filter_0, filter_1, filter_2 = Completed_Blur_Filter()
elif filter_name == 'Motion_Blur':
filter_0, filter_1, filter_2 = Motion_Blur_Filter()
elif filter_name == 'Gaussian_Blur':
filter_0, filter_1, filter_2 = Gaussian_Blur_Filter()
else:
filter_0, filter_1, filter_2 = None_Exist_Filter()
print '\nNo such Filter !\n'
return filter_0, filter_1, filter_2