Absolute flux calibration for LAMOST Low Resolution Spectral (LRS) data.
This is the Python realization of the re-calibrating procedure for the LAMOST spectra with the SDSS/PanSTARRS1 multi-band photometric data(see reference from LAMOST Quasar Survey DR6-9 (Jin et al. 2023))
- upload LAMOST QSO catalog
- crossmatch and get Mag_g,Mag_r,Mag_i or [OIII]5007
## 找附近的点
SELECT
m.name AS name,m.radeg AS ra1, m.decdeg AS dec1, n.distance,
o.ra AS ra2, o.dec AS dec2,o.petroMag_g AS Petro_g,o.petroMag_r AS Petro_r,o.petroMag_i AS Petro_i
FROM MyDB.turnOff AS m
OUTER APPLY dbo.fGetNearByObjAllEq( m.radeg, m.decdeg, 3.0/60.) AS n
LEFT JOIN PhotoObj AS o ON n.objid=o.objid
## 找最近的点
SELECT
m.radeg AS ra1, m.decdeg AS dec1, n.distance,
o.ra AS ra2, o.dec AS dec2,o.petroMag_g AS Petro_g,o.petroMag_r AS Petro_r,o.petroMag_i AS Petro_i
FROM MyDB.DATA AS m
OUTER APPLY dbo.fGetNearestObjEq(m.radeg, m.decdeg, 3.0/60.) AS n
LEFT JOIN PhotoObj AS o ON n.objid=o.objid
- download data
SDSS_path = './Filter/SDSS/'
mag_sdss_g = pd.read_csv(SDSS_path+'g.dat')
mag_sdss_r = pd.read_csv(SDSS_path+'r.dat')
mag_sdss_i = pd.read_csv(SDSS_path+'i.dat')
mag_sdss_z = pd.read_csv(SDSS_path+'z.dat')
mag_sdss_g.iloc=lam_g*10.
lam_r=lam_r*10.
lam_i=lam_i*10.
lam_z=lam_z*10.
Pstr_path = './Filter/Panstarr/'
mag_pstr_g = pd.read_csv(Pstr_path+'g.dat')
mag_pstr_r = pd.read_csv(Pstr_path+'r.dat')
mag_pstr_i = pd.read_csv(Pstr_path+'i.dat')
mag_pstr_z = pd.read_csv(Pstr_path+'z.dat')
LAMOST QSO candidate由两部分,一系列文章里面都有提到。
一个是lamost pipeline分类为qso的源,一个是和组里的输入星表(组里选的quasar候选体)的源。
LAMOST spectra LAMOST的光谱数据在官网上下载的。 选择某个DR,然后选择low resolution
LAMOST dr9 这里就可以直接用ra,dec进行下载了。
LAMOST光谱流量定标
== 使用测光数据进行流量定标:1)由于LAMOST的波长覆盖范围有限,所以只用到了gri三个波段,这三个波段可以在SDSS或者Pan-starr上获得。2)用SDSS(或者Pan-starr)的透过率曲线去卷积LAMOST光谱,就得到了对应的单色光度,用这个光谱去拟合在SDSS(或者Pan-starr)上得到的实际光度,就可以实现流量定标。
== 利用窄发射线做流量定标:这种方法是假设AGN的某些窄发射线是不发生变化的,将某个光谱乘上一个值,是的其窄线的flux和另一条光谱一致,就完成了流量定标,一般用到的窄线是[OIII]5007.
-
CaliFlux.py
-
CaliFlux_with_SDSS_mag.py
-
CaliFlux_with_PanSTAR_mag.py
-
CaliFlux_with_SDSS_OIII.py