forked from jpmorganchase/python-training
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Tim Paine
committed
Jul 31, 2019
1 parent
3d2e2c2
commit d151b1a
Showing
1 changed file
with
187 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Using Financial Data Example #1: Calculating Altman Z\" Score" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Professor Altman first formulated his infamous \"Z Score\" in [1968](http://www.defaultrisk.com/_pdf6j4/Financial_Ratios_Discriminant_Anlss_n_Prdctn_o_Crprt_Bnkrptc.pdf) while at NYU. The \"Z Score\" attempts to quantify the likelihood that a company defaults. After several iterations, the Altman Z\" (Double Prime) Score was developed to better quantify a company's credit risk. Professor Altman's presentation [here](http://pages.stern.nyu.edu/~ealtman/3-%20CopCrScoringModels.pdf) walks through several models including this one. When it was initially developed there were some crude cutoffs for the scores - above 2.6 and the firm was \"healthy\", between 1.1-2.6 was the \"grey area\", and below 1.1 and the firm as at risk of bankruptcy. However, over time that crude scale was refined. One of the unique things about the Altman Z\" Score today is that we have a mapping to conventional credit ratings. Below we walk through the example of calculating the score from scratch using [IEX data](https://iextrading.com/developer/docs/)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"$$ Z” = 6.56x_1 +3.26x_2 + 6.72x_3 + 1.05x_4 $$\n", | ||
"$$ \\textrm{Where:} $$\n", | ||
"$$ x_1 = \\textrm{Working Capital / Total Assets} $$\n", | ||
"$$ x_2 = \\textrm{Retained Earnings / Total Assets} $$\n", | ||
"$$ x_3 = \\textrm{EBIT / Total Assets} $$\n", | ||
"$$ x_4 = \\textrm{Market Value of Equity / Total Liabilities} $$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pyEX as p\n", | ||
"c = p.Client(api_token=\"pk_353fe2ce67cd4c16b30a748ff783c865\", version=\"v1\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ticker = \"aapl\"\n", | ||
"incomeStatement = c.incomeStatementDF(ticker)\n", | ||
"balanceSheet = c.balanceSheetDF(ticker)\n", | ||
"cfStatement = c.cashFlowDF(ticker)\n", | ||
"stats = c.keyStats(ticker)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x1 = ( balanceSheet[\"currentAssets\"][0] - balanceSheet[\"totalCurrentLiabilities\"][0] ) / balanceSheet[\"totalAssets\"][0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x2 = balanceSheet[\"retainedEarnings\"][0] / balanceSheet[\"totalAssets\"][0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x3 = incomeStatement[\"ebit\"][0] / balanceSheet[\"totalAssets\"][0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x4 = stats[\"marketcap\"] / balanceSheet[\"totalLiabilities\"][0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def altmanZDoublePrime( ticker ):\n", | ||
" '''\n", | ||
" Calculate the Altman Z\" Score for a given ticker\n", | ||
" \n", | ||
" ticker = string, user input for which to calculate the Z-score. Not case sensitive.\n", | ||
" '''\n", | ||
" incomeStatement = c.incomeStatementDF(ticker)\n", | ||
" balanceSheet = c.balanceSheetDF(ticker)\n", | ||
" cfStatement = c.cashFlowDF(ticker)\n", | ||
" stats = c.keyStats(ticker)\n", | ||
" x1 = ( balanceSheet[\"currentAssets\"][0] - balanceSheet[\"totalCurrentLiabilities\"][0] ) / balanceSheet[\"totalAssets\"][0]\n", | ||
" x2 = balanceSheet[\"retainedEarnings\"][0] / balanceSheet[\"totalAssets\"][0]\n", | ||
" x3 = incomeStatement[\"ebit\"][0] / balanceSheet[\"totalAssets\"][0]\n", | ||
" x4 = stats[\"marketcap\"] / balanceSheet[\"totalLiabilities\"][0]\n", | ||
" return 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"altmanZDoublePrime(\"aapl\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"def altmanZDPImpliedRating( ticker ):\n", | ||
" '''\n", | ||
" Calculate the implied credit rating from a company's Altman Z\" Score \n", | ||
" \n", | ||
" ticker = string, user input for which to calculate the Z-score. Not case sensitive.\n", | ||
" '''\n", | ||
" adjZScore = 3.25 + altmanZDoublePrime( ticker )\n", | ||
" zMap = [ 8.15, 7.6, 7.3, 7., 6.85, 6.65, 6.4, 6.25, 5.85, 5.65, 5.25, 4.95, 4.75, 4.5, 4.15, 3.75, 3.2, 2.5, 1.75 ]\n", | ||
" scores = [ \"AAA\", \"AA+\", \"AA\", \"AA-\", \"A+\", \"A\", \"A-\", \"BBB+\", \"BBB\", \"BBB-\", \"BB+\", \"BB\", \"BB-\", \"B+\", \"B\", \"B-\", \"CCC+\", \"CCC\", \"CCC-\", \"D\" ] \n", | ||
" return scores[ zMap.index( np.array( zMap )[ np.array( zMap ) < adjZScore ].max() ) ]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"altmanZDPImpliedRating(\"aapl\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |