Skip to content

Commit

Permalink
adding altman z''
Browse files Browse the repository at this point in the history
  • Loading branch information
Tim Paine committed Jul 31, 2019
1 parent 3d2e2c2 commit d151b1a
Showing 1 changed file with 187 additions and 0 deletions.
187 changes: 187 additions & 0 deletions notebooks/8_altman_z_double_prime.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Financial Data Example #1: Calculating Altman Z\" Score"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Professor Altman first formulated his infamous \"Z Score\" in [1968](http://www.defaultrisk.com/_pdf6j4/Financial_Ratios_Discriminant_Anlss_n_Prdctn_o_Crprt_Bnkrptc.pdf) while at NYU. The \"Z Score\" attempts to quantify the likelihood that a company defaults. After several iterations, the Altman Z\" (Double Prime) Score was developed to better quantify a company's credit risk. Professor Altman's presentation [here](http://pages.stern.nyu.edu/~ealtman/3-%20CopCrScoringModels.pdf) walks through several models including this one. When it was initially developed there were some crude cutoffs for the scores - above 2.6 and the firm was \"healthy\", between 1.1-2.6 was the \"grey area\", and below 1.1 and the firm as at risk of bankruptcy. However, over time that crude scale was refined. One of the unique things about the Altman Z\" Score today is that we have a mapping to conventional credit ratings. Below we walk through the example of calculating the score from scratch using [IEX data](https://iextrading.com/developer/docs/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$ Z” = 6.56x_1 +3.26x_2 + 6.72x_3 + 1.05x_4 $$\n",
"$$ \\textrm{Where:} $$\n",
"$$ x_1 = \\textrm{Working Capital / Total Assets} $$\n",
"$$ x_2 = \\textrm{Retained Earnings / Total Assets} $$\n",
"$$ x_3 = \\textrm{EBIT / Total Assets} $$\n",
"$$ x_4 = \\textrm{Market Value of Equity / Total Liabilities} $$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pyEX as p\n",
"c = p.Client(api_token=\"pk_353fe2ce67cd4c16b30a748ff783c865\", version=\"v1\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ticker = \"aapl\"\n",
"incomeStatement = c.incomeStatementDF(ticker)\n",
"balanceSheet = c.balanceSheetDF(ticker)\n",
"cfStatement = c.cashFlowDF(ticker)\n",
"stats = c.keyStats(ticker)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x1 = ( balanceSheet[\"currentAssets\"][0] - balanceSheet[\"totalCurrentLiabilities\"][0] ) / balanceSheet[\"totalAssets\"][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x2 = balanceSheet[\"retainedEarnings\"][0] / balanceSheet[\"totalAssets\"][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x3 = incomeStatement[\"ebit\"][0] / balanceSheet[\"totalAssets\"][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x4 = stats[\"marketcap\"] / balanceSheet[\"totalLiabilities\"][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def altmanZDoublePrime( ticker ):\n",
" '''\n",
" Calculate the Altman Z\" Score for a given ticker\n",
" \n",
" ticker = string, user input for which to calculate the Z-score. Not case sensitive.\n",
" '''\n",
" incomeStatement = c.incomeStatementDF(ticker)\n",
" balanceSheet = c.balanceSheetDF(ticker)\n",
" cfStatement = c.cashFlowDF(ticker)\n",
" stats = c.keyStats(ticker)\n",
" x1 = ( balanceSheet[\"currentAssets\"][0] - balanceSheet[\"totalCurrentLiabilities\"][0] ) / balanceSheet[\"totalAssets\"][0]\n",
" x2 = balanceSheet[\"retainedEarnings\"][0] / balanceSheet[\"totalAssets\"][0]\n",
" x3 = incomeStatement[\"ebit\"][0] / balanceSheet[\"totalAssets\"][0]\n",
" x4 = stats[\"marketcap\"] / balanceSheet[\"totalLiabilities\"][0]\n",
" return 6.56 * x1 + 3.26 * x2 + 6.72 * x3 + 1.05 * x4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"altmanZDoublePrime(\"aapl\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"def altmanZDPImpliedRating( ticker ):\n",
" '''\n",
" Calculate the implied credit rating from a company's Altman Z\" Score \n",
" \n",
" ticker = string, user input for which to calculate the Z-score. Not case sensitive.\n",
" '''\n",
" adjZScore = 3.25 + altmanZDoublePrime( ticker )\n",
" zMap = [ 8.15, 7.6, 7.3, 7., 6.85, 6.65, 6.4, 6.25, 5.85, 5.65, 5.25, 4.95, 4.75, 4.5, 4.15, 3.75, 3.2, 2.5, 1.75 ]\n",
" scores = [ \"AAA\", \"AA+\", \"AA\", \"AA-\", \"A+\", \"A\", \"A-\", \"BBB+\", \"BBB\", \"BBB-\", \"BB+\", \"BB\", \"BB-\", \"B+\", \"B\", \"B-\", \"CCC+\", \"CCC\", \"CCC-\", \"D\" ] \n",
" return scores[ zMap.index( np.array( zMap )[ np.array( zMap ) < adjZScore ].max() ) ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"altmanZDPImpliedRating(\"aapl\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit d151b1a

Please sign in to comment.