forked from asteroid-team/asteroid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
200 lines (173 loc) · 8.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import argparse
import json
import torch
from torch import nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from asteroid.engine.system import System
from asteroid.losses import PITLossWrapper, pairwise_mse
from asteroid.losses import deep_clustering_loss
from asteroid.filterbanks.transforms import take_mag, ebased_vad
from asteroid.data.wsj0_mix import make_dataloaders
from model import make_model_and_optimizer
EPS = 1e-8
parser = argparse.ArgumentParser()
parser.add_argument('--exp_dir', default='exp/tmp',
help='Full path to save best validation model')
def main(conf):
exp_dir = conf['main_args']['exp_dir']
# Define Dataloader
train_loader, val_loader = make_dataloaders(**conf['data'],
**conf['training'])
conf['masknet'].update({'n_src': conf['data']['n_src']})
# Define model, optimizer + scheduler
model, optimizer = make_model_and_optimizer(conf)
scheduler = None
if conf['training']['half_lr']:
scheduler = ReduceLROnPlateau(optimizer=optimizer, factor=0.5,
patience=5)
# Save config
os.makedirs(exp_dir, exist_ok=True)
conf_path = os.path.join(exp_dir, 'conf.yml')
with open(conf_path, 'w') as outfile:
yaml.safe_dump(conf, outfile)
# Define loss function
loss_func = ChimeraLoss(alpha=conf['training']['loss_alpha'])
# Put together in System
system = ChimeraSystem(model=model, loss_func=loss_func,
optimizer=optimizer, train_loader=train_loader,
val_loader=val_loader, scheduler=scheduler,
config=conf)
# Callbacks
checkpoint_dir = os.path.join(exp_dir, 'checkpoints/')
checkpoint = ModelCheckpoint(checkpoint_dir, monitor='val_loss',
mode='min', save_top_k=5, verbose=1)
early_stopping = False
if conf['training']['early_stop']:
early_stopping = EarlyStopping(monitor='val_loss', patience=10,
verbose=1)
gpus=-1
# Don't ask GPU if they are not available.
if not torch.cuda.is_available():
print('No available GPU were found, set gpus to None')
gpus = None
# Train model
trainer = pl.Trainer(max_nb_epochs=conf['training']['epochs'],
checkpoint_callback=checkpoint,
early_stop_callback=early_stopping,
default_save_path=exp_dir,
gpus=gpus,
distributed_backend='dp',
train_percent_check=1.0, # Useful for fast experiment
gradient_clip_val=200,)
trainer.fit(system)
best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
json.dump(best_k, f, indent=0)
# Save last model for convenience
torch.save(system.model.state_dict(),
os.path.join(exp_dir, 'checkpoints/final.pth'))
class ChimeraSystem(System):
def __init__(self, *args, mask_mixture=True, **kwargs):
super().__init__(*args, **kwargs)
self.mask_mixture = mask_mixture
def common_step(self, batch, batch_nb, train=False):
inputs, targets, masks = self.unpack_data(batch)
embeddings, est_masks = self(inputs)
spec = take_mag(self.model.encoder(inputs.unsqueeze(1)))
if self.mask_mixture:
est_masks = est_masks * spec.unsqueeze(1)
masks = masks * spec.unsqueeze(1)
loss, loss_dic = self.loss_func(embeddings, targets, est_src=est_masks,
target_src=masks, mix_spec=spec)
return loss, loss_dic
def training_step(self, batch, batch_nb):
loss, loss_dic = self.common_step(batch, batch_nb, train=True)
tensorboard_logs = dict(train_loss=loss,
train_dc_loss=loss_dic['dc_loss'],
train_pit_loss=loss_dic['pit_loss'])
return {'loss': loss, 'log': tensorboard_logs}
def validation_step(self, batch, batch_nb):
loss, loss_dic = self.common_step(batch, batch_nb, train=False)
tensorboard_logs = dict(val_loss=loss,
val_dc_loss=loss_dic['dc_loss'],
val_pit_loss=loss_dic['pit_loss'])
return {'val_loss': loss, 'log': tensorboard_logs}
def validation_end(self, outputs):
# Not so pretty for now but it helps.
avg_loss = torch.stack([x['val_loss']
for x in outputs]).mean()
avg_dc_loss = torch.stack([x['log']['val_dc_loss']
for x in outputs]).mean()
avg_pit_loss = torch.stack([x['log']['val_pit_loss']
for x in outputs]).mean()
tensorboard_logs = dict(val_loss=avg_loss,
val_dc_loss=avg_dc_loss,
val_pit_loss=avg_pit_loss)
return {'val_loss': avg_loss, 'log': tensorboard_logs,
'progress_bar': {'val_loss': avg_loss}}
def unpack_data(self, batch):
mix, sources = batch
# Compute magnitude spectrograms and IRM
src_mag_spec = take_mag(self.model.encoder(sources))
real_mask = src_mag_spec / (src_mag_spec.sum(1, keepdim=True) + EPS)
# Get the src idx having the maximum energy
binary_mask = real_mask.argmax(1)
return mix, binary_mask, real_mask
class ChimeraLoss(nn.Module):
""" Combines Deep clustering loss and mask inference loss for ChimeraNet.
Args:
alpha (float): loss weight. Total loss will be :
`alpha` * dc_loss + (1 - `alpha`) * mask_mse_loss.
"""
def __init__(self, alpha=0.1):
super().__init__()
assert alpha >= 0, "Negative alpha values don't make sense."
assert alpha <= 1, "Alpha values above 1 don't make sense."
# PIT loss
self.src_mse = PITLossWrapper(pairwise_mse, pit_from='pw_mtx')
self.alpha = alpha
def forward(self, est_embeddings, target_indices, est_src=None,
target_src=None, mix_spec=None):
"""
Args:
est_embeddings (torch.Tensor): Estimated embedding from the DC head.
target_indices (torch.Tensor): Target indices that'll be passed to
the DC loss.
est_src (torch.Tensor): Estimated magnitude spectrograms (or masks).
target_src (torch.Tensor): Target magnitude spectrograms (or masks).
mix_spec (torch.Tensor): The magnitude spectrogram of the mixture
from which VAD will be computed. If None, no VAD is used.
Returns:
torch.Tensor, the total loss, averaged over the batch.
dict with `dc_loss` and `pit_loss` keys, unweighted losses.
"""
if self.alpha != 0 and (est_src is None or target_src is None):
raise ValueError('Expected target and estimated spectrograms to '
'compute the PIT loss, found None.')
binary_mask = None
if mix_spec is not None:
binary_mask = ebased_vad(mix_spec)
# Dc loss is already divided by VAD in the loss function.
dc_loss = deep_clustering_loss(embedding=est_embeddings,
tgt_index=target_indices,
binary_mask=binary_mask)
src_pit_loss = self.src_mse(est_src, target_src)
# Equation (4) from Chimera paper.
tot = self.alpha * dc_loss.mean() + (1 - self.alpha) * src_pit_loss
# Return unweighted losses as well for logging.
loss_dict = dict(dc_loss=dc_loss.mean(),
pit_loss=src_pit_loss)
return tot, loss_dict
if __name__ == '__main__':
import yaml
from pprint import pprint
from asteroid.utils import prepare_parser_from_dict, parse_args_as_dict
with open('local/conf.yml') as f:
def_conf = yaml.safe_load(f)
parser = prepare_parser_from_dict(def_conf, parser=parser)
arg_dic, plain_args = parse_args_as_dict(parser, return_plain_args=True)
pprint(arg_dic)
main(arg_dic)