forked from asteroid-team/asteroid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
116 lines (102 loc) · 4.76 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import json
import yaml
import argparse
import random
import torch
from tqdm import tqdm
import pandas as pd
import soundfile as sf
from pprint import pprint
from asteroid.utils import tensors_to_device
from asteroid.losses import PITLossWrapper, pairwise_neg_sisdr
from asteroid.metrics import get_metrics
from model import load_best_model
from asteroid.data import Wsj0mixDataset
parser = argparse.ArgumentParser()
parser.add_argument('--test_dir', type=str, required=True,
help='Local data directory with test files')
parser.add_argument('--n_src', type=int, default=2)
parser.add_argument('--use_gpu', type=int, default=0,
help='Whether to use the GPU for model execution')
parser.add_argument('--exp_dir', default='exp/tmp',
help='Experiment root')
parser.add_argument('--n_save_ex', type=int, default=-1,
help='Number of audio examples to save, -1 means all')
compute_metrics = ['si_sdr', 'sdr', 'sir', 'sar', 'stoi']
def main(conf):
model = load_best_model(conf['train_conf'], conf['exp_dir'])
# Handle device placement
if conf['use_gpu']:
model.cuda()
model_device = next(model.parameters()).device
test_set = Wsj0mixDataset(conf['test_dir'], n_src=conf['n_src'],
segment=None)
# Used to reorder sources only
loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx')
# Randomly choose the indexes of sentences to save.
ex_save_dir = os.path.join(conf['exp_dir'], 'examples/')
if conf['n_save_ex'] == -1:
conf['n_save_ex'] = len(test_set)
save_idx = random.sample(range(len(test_set)), conf['n_save_ex'])
series_list = []
torch.no_grad().__enter__()
for idx in tqdm(range(len(test_set))):
# Forward the network on the mixture.
mix, sources = tensors_to_device(test_set[idx], device=model_device)
if conf['train_conf']['training']['loss_alpha'] == 1:
# If Deep clustering only, use DC masks.
est_sources, dic_out = model.dc_head_separate(mix[None, None])
else:
# If Chimera, use mask-inference head masks
est_sources, dic_out = model.separate(mix[None, None])
loss, reordered_sources = loss_func(est_sources, sources[None],
return_est=True)
mix_np = mix[None].cpu().data.numpy()
sources_np = sources.cpu().data.numpy()
est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy()
utt_metrics = get_metrics(mix_np, sources_np, est_sources_np,
sample_rate=conf['sample_rate'],
metrics_list=compute_metrics)
utt_metrics['mix_path'] = test_set.mix[idx][0]
series_list.append(pd.Series(utt_metrics))
# Save some examples in a folder. Wav files and metrics as text.
if idx in save_idx:
local_save_dir = os.path.join(ex_save_dir, 'ex_{}/'.format(idx))
os.makedirs(local_save_dir, exist_ok=True)
sf.write(local_save_dir + "mixture.wav", mix_np[0],
conf['sample_rate'])
# Loop over the sources and estimates
for src_idx, src in enumerate(sources_np):
sf.write(local_save_dir + "s{}.wav".format(src_idx+1), src,
conf['sample_rate'])
for src_idx, est_src in enumerate(est_sources_np):
sf.write(local_save_dir + "s{}_estimate.wav".format(src_idx+1),
est_src, conf['sample_rate'])
# Write local metrics to the example folder.
with open(local_save_dir + 'metrics.json', 'w') as f:
json.dump(utt_metrics, f, indent=0)
# Save all metrics to the experiment folder.
all_metrics_df = pd.DataFrame(series_list)
all_metrics_df.to_csv(os.path.join(conf['exp_dir'], 'all_metrics.csv'))
# Print and save summary metrics
final_results = {}
for metric_name in compute_metrics:
input_metric_name = 'input_' + metric_name
ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
final_results[metric_name] = all_metrics_df[metric_name].mean()
final_results[metric_name + '_imp'] = ldf.mean()
print('Overall metrics :')
pprint(final_results)
with open(os.path.join(conf['exp_dir'], 'final_metrics.json'), 'w') as f:
json.dump(final_results, f, indent=0)
if __name__ == '__main__':
args = parser.parse_args()
arg_dic = dict(vars(args))
# Load training config
conf_path = os.path.join(args.exp_dir, 'conf.yml')
with open(conf_path) as f:
train_conf = yaml.safe_load(f)
arg_dic['sample_rate'] = train_conf['data']['sample_rate']
arg_dic['train_conf'] = train_conf
main(arg_dic)