forked from pingswept/pysolar
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
228 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
# Copyright Brandon Stafford | ||
# | ||
# This file is part of Pysolar. | ||
# | ||
# Pysolar is free software; you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation; either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# Pysolar is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License along | ||
# with Pysolar. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
import math | ||
from .constants import standard_pressure | ||
|
||
albedo = {} # single-scattering albedo used to calculate aerosol scattering transmittance | ||
|
||
albedo["high-frequency"] = 0.92 | ||
albedo["low-frequency"] = 0.84 | ||
standard_pressure_millibars = standard_pressure / 100 | ||
|
||
rhogi = 0.150 # mean ground albedo from [Gueymard, 2008], Table 1 | ||
|
||
E0n = {"high-frequency": 635.4, # extra-atmospheric irradiance, 290-700 nm (UV and visible) | ||
"low-frequency": 709.7} # extra-atmospheric irradiance, 700-4000 nm (short infrared) | ||
|
||
def GetAerosolForwardScatteranceFactor(altitude_deg): | ||
Z = 90 - altitude_deg | ||
return 1 - math.e ** (-0.6931 - 1.8326 * math.cos(math.radians(Z))) | ||
|
||
def GetAerosolOpticalDepth(turbidity_beta, effective_wavelength, turbidity_alpha): | ||
# returns tau_a | ||
return turbidity_beta * effective_wavelength ** -turbidity_alpha | ||
|
||
def GetAerosolScatteringCorrectionFactor(band, ma, tau_a): | ||
# returns F | ||
if band == "high-frequency": | ||
g0 = (3.715 + 0.368 * ma + 0.036294 * ma ** 2)/(1 + 0.0009391 * ma ** 2) | ||
g1 = (-0.164 - 0.72567 * ma + 0.20701 * ma ** 2)/(1 + 0.001901 * ma ** 2) | ||
g2 = (-0.052288 + 0.31902 * ma + 0.17871 * ma ** 2)/(1 + 0.0069592 * ma ** 2) | ||
return (g0 + g1 * tau_a)/(1 + g2 * tau_a) | ||
else: | ||
h0 = (3.4352 + 0.65267 * ma + 0.00034328 * ma ** 2)/(1 + 0.034388 * ma ** 1.5) | ||
h1 = (1.231 - 1.63853 * ma + 0.20667 * ma ** 2)/(1 + 0.1451 * ma ** 1.5) | ||
h2 = (0.8889 - 0.55063 * ma + 0.50152 * ma ** 2)/(1 + 0.14865 * ma ** 1.5) | ||
return (h0 + h1 * tau_a)/(1 + h2 * tau_a) | ||
|
||
def GetAerosolTransmittance(band, ma, tau_a): | ||
# returns Ta | ||
return math.exp(-ma * tau_a) | ||
|
||
def GetAerosolScatteringTransmittance(band, ma, tau_a): | ||
# returns Tas | ||
return math.exp(-ma * albedo[band] * tau_a) | ||
|
||
def GetBeamBroadbandIrradiance(Ebn, altitude_deg): | ||
Z = 90 - altitude_deg | ||
return Ebn * math.cos(math.radians(Z)) | ||
|
||
def GetDiffuseIrradiance(): | ||
return GetDiffuseIrradianceByBand("high-frequency") + GetDiffuseIrradianceByBand("low-frequency") | ||
|
||
def GetDiffuseIrradianceByBand(band, air_mass=1.66, turbidity_alpha=1.3, turbidity_beta=0.6): | ||
Z = 90 - altitude_deg | ||
effective_wavelength = GetEffectiveAerosolWavelength(band, turbidity_alpha) | ||
tau_a = GetAerosolOpticalDepth(turbidity_beta, effective_wavelength, turbidity_alpha) | ||
rhosi = GetSkyAlbedo(band, turbidity_alpha, turbidity_beta) | ||
|
||
ma = GetOpticalMassAerosol(altitude_deg) | ||
mo = GetOpticalMassOzone(altitude_deg) | ||
mR = GetOpticalMassRayleigh(altitude_deg, pressure_millibars) | ||
|
||
To = GetOzoneTransmittance(band, mo) | ||
Tg = GetGasTransmittance(band, mR) | ||
Tn = GetNitrogenTransmittance(band, 1.66) | ||
Tw = GetWaterVaporTransmittance(band, 1.66) | ||
TR = GetRayleighTransmittance(band, mR) | ||
Ta = GetAerosolTransmittance(band, ma, tau_a) | ||
Tas = GetAerosolScatteringTransmittance(band, ma, tau_a) | ||
|
||
BR = GetRayleighExtinctionForwardScatteringFraction(band, air_mass) | ||
Ba = GetAerosolForwardScatteranceFactor(altitude_deg) | ||
F = GetAerosolScatteringCorrectionFactor(band, ma, tau_a) | ||
|
||
Edp = To * Tg * Tn * Tw * (BR * (1 - TR) * Ta ** 0.25 + Ba * F * TR * (1 - Tas ** 0.25)) * E0n[band] | ||
Edd = rhogi * rhosi * (Eb + Edp)/(1 - rhogi * rhosi) | ||
return Edp + Edd | ||
|
||
def GetDirectNormalIrradiance(altitude_deg, pressure_millibars=standard_pressure_millibars, ozone_atm_cm=0.35, nitrogen_atm_cm=0.0002, precipitable_water_cm=5.0, turbidity_alpha=1.3, turbidity_beta=0.6): | ||
high = GetDirectNormalIrradianceByBand("high-frequency", altitude_deg, pressure_millibars, ozone_atm_cm, nitrogen_atm_cm, precipitable_water_cm, turbidity_alpha, turbidity_beta) | ||
low = GetDirectNormalIrradianceByBand("low-frequency", altitude_deg, pressure_millibars, ozone_atm_cm, nitrogen_atm_cm, precipitable_water_cm, turbidity_alpha, turbidity_beta) | ||
return high + low | ||
|
||
def GetDirectNormalIrradianceByBand(band, altitude_deg, pressure_millibars=standard_pressure_millibars, ozone_atm_cm=0.35, nitrogen_atm_cm=0.0002, precipitable_water_cm=5.0, turbidity_alpha=1.3, turbidity_beta=0.6): | ||
ma = GetOpticalMassAerosol(altitude_deg) | ||
mo = GetOpticalMassOzone(altitude_deg) | ||
mR = GetOpticalMassRayleigh(altitude_deg, pressure_millibars) | ||
mRprime = mR * pressure_millibars / standard_pressure_millibars | ||
mw = GetOpticalMassWater(altitude_deg) | ||
|
||
effective_wavelength = GetEffectiveAerosolWavelength(band, ma, turbidity_alpha, turbidity_beta) | ||
tau_a = GetAerosolOpticalDepth(turbidity_beta, effective_wavelength, turbidity_alpha) | ||
|
||
TR = GetRayleighTransmittance(band, mRprime) | ||
Tg = GetGasTransmittance(band, mRprime) | ||
To = GetOzoneTransmittance(band, mo, ozone_atm_cm) | ||
Tn = GetNitrogenTransmittance(band, mw, nitrogen_atm_cm) # is water_optical_mass really used for nitrogen calc? | ||
Tw = GetWaterVaporTransmittance(band, mw, precipitable_water_cm) | ||
Ta = GetAerosolTransmittance(band, ma, tau_a) | ||
return E0n[band] * TR * Tg * To * Tn * Tw * Ta | ||
|
||
def GetEffectiveAerosolWavelength(band, ma, turbidity_alpha, turbidity_beta): | ||
ua = math.log(1 + ma * turbidity_beta) | ||
if band == "high-frequency": | ||
a1 = turbidity_alpha # just renaming to keep equations short | ||
d0 = 0.57664 - 0.024743 * a1 | ||
d1 = (0.093942 - 0.2269 * a1 + 0.12848 * a1 ** 2)/(1 + 0.6418 * a1) | ||
d2 = (-0.093819 + 0.36668 * a1 - 0.12775 * a1 ** 2)/(1 - 0.11651 * a1) | ||
d3 = a1 * (0.15232 - 0.087214 * a1 + 0.012664 * a1 ** 2)/(1 - 0.90454 * a1 + 0.26167 * a1 ** 2) | ||
return (d0 + d1 * ua + d2 * ua ** 2)/(1 + d3 * ua ** 2) | ||
else: | ||
a2 = turbidity_alpha | ||
e0 = (1.183 - 0.022989 * a2 + 0.020829 * a2 ** 2)/(1 + 0.11133 * a2) | ||
e1 = (-0.50003 - 0.18329 * a2 + 0.23835 * a2 ** 2)/(1 + 1.6756 * a2) | ||
e2 = (-0.50001 + 1.1414 * a2 + 0.0083589 * a2 ** 2)/(1 + 11.168 * a2) | ||
e3 = (-0.70003 - 0.73587 * a2 + 0.51509 * a2 ** 2)/(1 + 4.7665 * a2) | ||
return (e0 + e1 * ua + e2 * ua ** 2)/(1 + e3 * ua ** 2) | ||
|
||
def GetGasTransmittance(band, mRprime): | ||
if band == "high-frequency": | ||
return (1 + 0.95885 * mRprime + 0.012871 * mRprime ** 2)/(1 + 0.96321 * mRprime + 0.015455 * mRprime ** 2) | ||
else: | ||
return (1 + 0.27284 * mRprime - 0.00063699 * mRprime ** 2)/(1 + 0.30306 * mRprime) | ||
|
||
def GetBroadbandGlobalIrradiance(Ebn, altitude_deg, Ed): | ||
return GetBeamBroadbandIrradiance(Ebn, altitude_deg) + Ed | ||
|
||
def GetNitrogenTransmittance(band, mw, nitrogen_atm_cm): | ||
if band == "high-frequency": | ||
g1 = (0.17499 + 41.654 * un - 2146.4 * un ** 2)/(1 + 22295.0 * un ** 2) | ||
g2 = un * (-1.2134 + 59.324 * un)/(1 + 8847.8 * un ** 2) | ||
g3 = (0.17499 + 61.658 * un + 9196.4 * un ** 2)/(1 + 74109.0 * un ** 2) | ||
return min (1, (1 + g1 * mw + g2 * mw ** 2)/(1 + g3 * mw)) | ||
else: | ||
return 1.0 | ||
|
||
def GetOpticalMassRayleigh(altitude_deg, pressure_millibars): # from Appendix B of [Gueymard, 2003] | ||
Z = 90 - altitude_deg | ||
Z_rad = math.radians(Z) | ||
return (pressure_millibars / standard_pressure_millibars)/((math.cos(Z_rad) + 0.48353 * Z_rad ** 0.095846)/(96.741 - Z_rad) ** 1.754) | ||
|
||
def GetOpticalMassOzone(altitude_deg): # from Appendix B of [Gueymard, 2003] | ||
Z = 90 - altitude_deg | ||
Z_rad = math.radians(Z) | ||
return 1/((math.cos(Z_rad) + 1.0651 * Z_rad ** 0.6379)/(101.8 - Z_rad) ** 2.2694) | ||
|
||
def GetOpticalMassWater(altitude_deg): # from Appendix B of [Gueymard, 2003] | ||
Z = 90 - altitude_deg | ||
Z_rad = math.radians(Z) | ||
return 1/((math.cos(Z_rad) + 0.10648 * Z_rad ** 0.11423)/(93.781 - Z_rad) ** 1.9203) | ||
|
||
def GetOpticalMassAerosol(altitude_deg): # from Appendix B of [Gueymard, 2003] | ||
Z = 90 - altitude_deg | ||
Z_rad = math.radians(Z) | ||
return 1/((math.cos(Z_rad) + 0.16851 * Z_rad ** 0.18198)/(95.318 - Z_rad) ** 1.9542) | ||
|
||
def GetOzoneTransmittance(band, mo, uo): | ||
if band == "high-frequency": | ||
f1 = uo(10.979 - 8.5421 * uo)/(1 + 2.0115 * uo + 40.189 * uo **2) | ||
f2 = uo(-0.027589 - 0.005138 * uo)/(1 - 2.4857 * uo + 13.942 * uo **2) | ||
f3 = uo(10.995 - 5.5001 * uo)/(1 + 1.6784 * uo + 42.406 * uo **2) | ||
return (1 + f1 * mo + f2 * mo ** 2)/(1 + f3 * mo) | ||
else: | ||
return 1.0 | ||
|
||
def GetRayleighExtinctionForwardScatteringFraction(band, mR): | ||
# returns BR | ||
if band == "high-frequency": | ||
return 0.5 * (0.89013 - 0.049558 * mR + 0.000045721 * mR ** 2) | ||
else: | ||
return 0.5 | ||
|
||
def GetRayleighTransmittance(band, mRprime): | ||
if band == "high-frequency": | ||
return (1 + 1.8169 * mRprime + 0.033454 * mRprime ** 2)/(1 + 2.063 * mRprime + 0.31978 * mRprime ** 2) | ||
else: | ||
return (1 - 0.010394 * mRprime)/(1 - 0.00011042 * mRprime ** 2) | ||
|
||
def GetSkyAlbedo(band, turbidity_alpha, turbidity_beta): | ||
if band == "high-frequency": | ||
a1 = turbidity_alpha # just renaming to keep equations short | ||
b1 = turbidity_beta | ||
rhos = (0.13363 + 0.00077358 * a1 + b1 * (0.37567 | ||
+ 0.22946 * a1)/(1 - 0.10832 * a1))/(1 + b1 * (0.84057 | ||
+ 0.68683 * a1)/(1 - 0.08158 * a1)) | ||
else: | ||
a2 = turbidity_alpha # just renaming to keep equations short | ||
b2 = turbidity_beta | ||
rhos = (0.010191 + 0.00085547 * a2 + b2 * (0.14618 | ||
+ 0.062758 * a2)/(1 - 0.19402 * a2))/(1 + b2 * (0.58101 | ||
+ 0.17426 * a2)/(1 - 0.17586 * a2)) | ||
return rhos | ||
|
||
def GetWaterVaporTransmittance(band, mw, w): | ||
if band == "high-frequency": | ||
h = GetWaterVaporTransmittanceCoefficients(band, w) | ||
return (1 + h[1] * mw)/(1 + h[2] * mw) | ||
else: | ||
c = GetWaterVaporTransmittanceCoefficients(band, w) | ||
return (1 + c[1] * mw + c[2] * mw ** 2)/(1 + c[3] * mw + c[4] * mw ** 2) | ||
|
||
def GetWaterVaporTransmittanceCoefficients(band, w): | ||
if band == "high-frequency": | ||
h1 = w * (0.065445 + 0.00029901 * w)/(1 + 1.2728 * w) | ||
h2 = w * (0.065687 + 0.0013218 * w)/(1 + 1.2008 * w) | ||
return [float('NaN'), h1, h2] | ||
else: | ||
c1 = w * (19.566 - 1.6506 * w + 1.0672 * w ** 2)/(1 + 5.4248 * w + 1.6005 * w ** 2) | ||
c2 = w * (0.50158 - 0.14732 * w + 0.047584 * w ** 2)/(1 + 1.1811 * w + 1.0699 * w ** 2) | ||
c3 = w * (21.286 - 0.39232 * w + 1.2692 * w ** 2)/(1 + 4.8318 * w + 1.412 * w ** 2) | ||
c4 = w * (0.70992 - 0.23155 * w + 0.096514 * w ** 2)/(1 + 0.44907 * w + 0.75425 * w ** 2) | ||
return [float('NaN'), c1, c2, c3, c4] | ||
|