Skip to content

tungnguyen1234/LLI-Recommender-System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Latent Invariance (LLI) for the Recommender System

The LLI algorithm extracts the latent variable vectors from using a linear optimization framework for tensor and retrieve recommendation from caculations of those latent variable vectors.

Running 2D LLI

For train-test-split percentage $20%$ and convergence threshold $1e-10$ on MovieLens1M data:

python src/main.py 2 ml-1m --percent 0.2 --eps 1e-10 --gpuid 0

Running 3D LLI

For the MovieLens1M dataset using 3 features with percentage $0.2$, $800$ data points, $10$ steps of evaluations, and GPU 0 is.

python src/main.py 3 ml-1m --percent 0.2 --limit 800 --num_feature 3 --steps 10 --gpuid 0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published