forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode.py
1144 lines (983 loc) · 40 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict, List, Optional, Union
import k2
import torch
from icefall.utils import add_eos, add_sos, get_texts
DEFAULT_LM_SCALE = [
0.01,
0.05,
0.08,
0.1,
0.3,
0.5,
0.6,
0.7,
0.9,
1.0,
1.1,
1.2,
1.3,
1.5,
1.7,
1.9,
2.0,
2.1,
2.2,
2.3,
2.5,
3.0,
4.0,
5.0,
]
def _intersect_device(
a_fsas: k2.Fsa,
b_fsas: k2.Fsa,
b_to_a_map: torch.Tensor,
sorted_match_a: bool,
batch_size: int = 50,
) -> k2.Fsa:
"""This is a wrapper of k2.intersect_device and its purpose is to split
b_fsas into several batches and process each batch separately to avoid
CUDA OOM error.
The arguments and return value of this function are the same as
:func:`k2.intersect_device`.
"""
num_fsas = b_fsas.shape[0]
if num_fsas <= batch_size:
return k2.intersect_device(
a_fsas, b_fsas, b_to_a_map=b_to_a_map, sorted_match_a=sorted_match_a
)
num_batches = (num_fsas + batch_size - 1) // batch_size
splits = []
for i in range(num_batches):
start = i * batch_size
end = min(start + batch_size, num_fsas)
splits.append((start, end))
ans = []
for start, end in splits:
indexes = torch.arange(start, end).to(b_to_a_map)
fsas = k2.index_fsa(b_fsas, indexes)
b_to_a = k2.index_select(b_to_a_map, indexes)
path_lattice = k2.intersect_device(
a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a
)
ans.append(path_lattice)
return k2.cat(ans)
def get_lattice(
nnet_output: torch.Tensor,
decoding_graph: k2.Fsa,
supervision_segments: torch.Tensor,
search_beam: float,
output_beam: float,
min_active_states: int,
max_active_states: int,
subsampling_factor: int = 1,
) -> k2.Fsa:
"""Get the decoding lattice from a decoding graph and neural
network output.
Args:
nnet_output:
It is the output of a neural model of shape `(N, T, C)`.
decoding_graph:
An Fsa, the decoding graph. It can be either an HLG
(see `compile_HLG.py`) or an H (see `k2.ctc_topo`).
supervision_segments:
A 2-D **CPU** tensor of dtype `torch.int32` with 3 columns.
Each row contains information for a supervision segment. Column 0
is the `sequence_index` indicating which sequence this segment
comes from; column 1 specifies the `start_frame` of this segment
within the sequence; column 2 contains the `duration` of this
segment.
search_beam:
Decoding beam, e.g. 20. Smaller is faster, larger is more exact
(less pruning). This is the default value; it may be modified by
`min_active_states` and `max_active_states`.
output_beam:
Beam to prune output, similar to lattice-beam in Kaldi. Relative
to best path of output.
min_active_states:
Minimum number of FSA states that are allowed to be active on any given
frame for any given intersection/composition task. This is advisory,
in that it will try not to have fewer than this number active.
Set it to zero if there is no constraint.
max_active_states:
Maximum number of FSA states that are allowed to be active on any given
frame for any given intersection/composition task. This is advisory,
in that it will try not to exceed that but may not always succeed.
You can use a very large number if no constraint is needed.
subsampling_factor:
The subsampling factor of the model.
Returns:
An FsaVec containing the decoding result. It has axes [utt][state][arc].
"""
dense_fsa_vec = k2.DenseFsaVec(
nnet_output,
supervision_segments,
allow_truncate=subsampling_factor - 1,
)
lattice = k2.intersect_dense_pruned(
decoding_graph,
dense_fsa_vec,
search_beam=search_beam,
output_beam=output_beam,
min_active_states=min_active_states,
max_active_states=max_active_states,
)
return lattice
class Nbest(object):
"""
An Nbest object contains two fields:
(1) fsa. It is an FsaVec containing a vector of **linear** FSAs.
Its axes are [path][state][arc]
(2) shape. Its type is :class:`k2.RaggedShape`.
Its axes are [utt][path]
The field `shape` has two axes [utt][path]. `shape.dim0` contains
the number of utterances, which is also the number of rows in the
supervision_segments. `shape.tot_size(1)` contains the number
of paths, which is also the number of FSAs in `fsa`.
Caution:
Don't be confused by the name `Nbest`. The best in the name `Nbest`
has nothing to do with `best scores`. The important part is
`N` in `Nbest`, not `best`.
"""
def __init__(self, fsa: k2.Fsa, shape: k2.RaggedShape) -> None:
"""
Args:
fsa:
An FsaVec with axes [path][state][arc]. It is expected to contain
a list of **linear** FSAs.
shape:
A ragged shape with two axes [utt][path].
"""
assert len(fsa.shape) == 3, f"fsa.shape: {fsa.shape}"
assert shape.num_axes == 2, f"num_axes: {shape.num_axes}"
if fsa.shape[0] != shape.tot_size(1):
raise ValueError(
f"{fsa.shape[0]} vs {shape.tot_size(1)}\n"
"Number of FSAs in `fsa` does not match the given shape"
)
self.fsa = fsa
self.shape = shape
def __str__(self):
s = "Nbest("
s += f"Number of utterances:{self.shape.dim0}, "
s += f"Number of Paths:{self.fsa.shape[0]})"
return s
@staticmethod
def from_lattice(
lattice: k2.Fsa,
num_paths: int,
use_double_scores: bool = True,
nbest_scale: float = 0.5,
) -> "Nbest":
"""Construct an Nbest object by **sampling** `num_paths` from a lattice.
Each sampled path is a linear FSA.
We assume `lattice.labels` contains token IDs and `lattice.aux_labels`
contains word IDs.
Args:
lattice:
An FsaVec with axes [utt][state][arc].
num_paths:
Number of paths to **sample** from the lattice
using :func:`k2.random_paths`.
use_double_scores:
True to use double precision in :func:`k2.random_paths`.
False to use single precision.
scale:
Scale `lattice.score` before passing it to :func:`k2.random_paths`.
A smaller value leads to more unique paths at the risk of being not
to sample the path with the best score.
Returns:
Return an Nbest instance.
"""
saved_scores = lattice.scores.clone()
lattice.scores *= nbest_scale
# path is a ragged tensor with dtype torch.int32.
# It has three axes [utt][path][arc_pos]
path = k2.random_paths(
lattice, num_paths=num_paths, use_double_scores=use_double_scores
)
lattice.scores = saved_scores
# word_seq is a k2.RaggedTensor sharing the same shape as `path`
# but it contains word IDs. Note that it also contains 0s and -1s.
# The last entry in each sublist is -1.
# It axes is [utt][path][word_id]
if isinstance(lattice.aux_labels, torch.Tensor):
word_seq = k2.ragged.index(lattice.aux_labels, path)
else:
word_seq = lattice.aux_labels.index(path)
word_seq = word_seq.remove_axis(word_seq.num_axes - 2)
word_seq = word_seq.remove_values_leq(0)
# Each utterance has `num_paths` paths but some of them transduces
# to the same word sequence, so we need to remove repeated word
# sequences within an utterance. After removing repeats, each utterance
# contains different number of paths
#
# `new2old` is a 1-D torch.Tensor mapping from the output path index
# to the input path index.
_, _, new2old = word_seq.unique(
need_num_repeats=False, need_new2old_indexes=True
)
# kept_path is a ragged tensor with dtype torch.int32.
# It has axes [utt][path][arc_pos]
kept_path, _ = path.index(new2old, axis=1, need_value_indexes=False)
# utt_to_path_shape has axes [utt][path]
utt_to_path_shape = kept_path.shape.get_layer(0)
# Remove the utterance axis.
# Now kept_path has only two axes [path][arc_pos]
kept_path = kept_path.remove_axis(0)
# labels is a ragged tensor with 2 axes [path][token_id]
# Note that it contains -1s.
labels = k2.ragged.index(lattice.labels.contiguous(), kept_path)
# Remove -1 from labels as we will use it to construct a linear FSA
labels = labels.remove_values_eq(-1)
if isinstance(lattice.aux_labels, k2.RaggedTensor):
# lattice.aux_labels is a ragged tensor with dtype torch.int32.
# It has 2 axes [arc][word], so aux_labels is also a ragged tensor
# with 2 axes [arc][word]
aux_labels, _ = lattice.aux_labels.index(
indexes=kept_path.values, axis=0, need_value_indexes=False
)
else:
assert isinstance(lattice.aux_labels, torch.Tensor)
aux_labels = k2.index_select(lattice.aux_labels, kept_path.values)
# aux_labels is a 1-D torch.Tensor. It also contains -1 and 0.
fsa = k2.linear_fsa(labels)
fsa.aux_labels = aux_labels
# Caution: fsa.scores are all 0s.
# `fsa` has only one extra attribute: aux_labels.
return Nbest(fsa=fsa, shape=utt_to_path_shape)
def intersect(self, lattice: k2.Fsa, use_double_scores=True) -> "Nbest":
"""Intersect this Nbest object with a lattice, get 1-best
path from the resulting FsaVec, and return a new Nbest object.
The purpose of this function is to attach scores to an Nbest.
Args:
lattice:
An FsaVec with axes [utt][state][arc]. If it has `aux_labels`, then
we assume its `labels` are token IDs and `aux_labels` are word IDs.
If it has only `labels`, we assume its `labels` are word IDs.
use_double_scores:
True to use double precision when computing shortest path.
False to use single precision.
Returns:
Return a new Nbest. This new Nbest shares the same shape with `self`,
while its `fsa` is the 1-best path from intersecting `self.fsa` and
`lattice`. Also, its `fsa` has non-zero scores and inherits attributes
for `lattice`.
"""
# Note: We view each linear FSA as a word sequence
# and we use the passed lattice to give each word sequence a score.
#
# We are not viewing each linear FSAs as a token sequence.
#
# So we use k2.invert() here.
# We use a word fsa to intersect with k2.invert(lattice)
word_fsa = k2.invert(self.fsa)
word_fsa.scores.zero_()
if hasattr(lattice, "aux_labels"):
# delete token IDs as it is not needed
del word_fsa.aux_labels
word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa)
else:
word_fsa_with_epsilon_loops = k2.linear_fst_with_self_loops(word_fsa)
path_to_utt_map = self.shape.row_ids(1)
if hasattr(lattice, "aux_labels"):
# lattice has token IDs as labels and word IDs as aux_labels.
# inv_lattice has word IDs as labels and token IDs as aux_labels
inv_lattice = k2.invert(lattice)
inv_lattice = k2.arc_sort(inv_lattice)
else:
inv_lattice = k2.arc_sort(lattice)
if inv_lattice.shape[0] == 1:
path_lattice = _intersect_device(
inv_lattice,
word_fsa_with_epsilon_loops,
b_to_a_map=torch.zeros_like(path_to_utt_map),
sorted_match_a=True,
)
else:
path_lattice = _intersect_device(
inv_lattice,
word_fsa_with_epsilon_loops,
b_to_a_map=path_to_utt_map,
sorted_match_a=True,
)
# path_lattice has word IDs as labels and token IDs as aux_labels
path_lattice = k2.top_sort(k2.connect(path_lattice))
one_best = k2.shortest_path(path_lattice, use_double_scores=use_double_scores)
one_best = k2.invert(one_best)
# Now one_best has token IDs as labels and word IDs as aux_labels
return Nbest(fsa=one_best, shape=self.shape)
def compute_am_scores(self) -> k2.RaggedTensor:
"""Compute AM scores of each linear FSA (i.e., each path within
an utterance).
Hint:
`self.fsa.scores` contains two parts: acoustic scores (AM scores)
and n-gram language model scores (LM scores).
Caution:
We require that ``self.fsa`` has an attribute ``lm_scores``.
Returns:
Return a ragged tensor with 2 axes [utt][path_scores].
Its dtype is torch.float64.
"""
scores_shape = self.fsa.arcs.shape().remove_axis(1)
# scores_shape has axes [path][arc]
am_scores = self.fsa.scores - self.fsa.lm_scores
ragged_am_scores = k2.RaggedTensor(scores_shape, am_scores.contiguous())
tot_scores = ragged_am_scores.sum()
return k2.RaggedTensor(self.shape, tot_scores)
def compute_lm_scores(self) -> k2.RaggedTensor:
"""Compute LM scores of each linear FSA (i.e., each path within
an utterance).
Hint:
`self.fsa.scores` contains two parts: acoustic scores (AM scores)
and n-gram language model scores (LM scores).
Caution:
We require that ``self.fsa`` has an attribute ``lm_scores``.
Returns:
Return a ragged tensor with 2 axes [utt][path_scores].
Its dtype is torch.float64.
"""
scores_shape = self.fsa.arcs.shape().remove_axis(1)
# scores_shape has axes [path][arc]
ragged_lm_scores = k2.RaggedTensor(
scores_shape, self.fsa.lm_scores.contiguous()
)
tot_scores = ragged_lm_scores.sum()
return k2.RaggedTensor(self.shape, tot_scores)
def tot_scores(self) -> k2.RaggedTensor:
"""Get total scores of FSAs in this Nbest.
Note:
Since FSAs in Nbest are just linear FSAs, log-semiring
and tropical semiring produce the same total scores.
Returns:
Return a ragged tensor with two axes [utt][path_scores].
Its dtype is torch.float64.
"""
scores_shape = self.fsa.arcs.shape().remove_axis(1)
# scores_shape has axes [path][arc]
ragged_scores = k2.RaggedTensor(scores_shape, self.fsa.scores.contiguous())
tot_scores = ragged_scores.sum()
return k2.RaggedTensor(self.shape, tot_scores)
def build_levenshtein_graphs(self) -> k2.Fsa:
"""Return an FsaVec with axes [utt][state][arc]."""
word_ids = get_texts(self.fsa, return_ragged=True)
return k2.levenshtein_graph(word_ids)
def one_best_decoding(
lattice: k2.Fsa,
use_double_scores: bool = True,
lm_scale_list: Optional[List[float]] = None,
) -> Union[k2.Fsa, Dict[str, k2.Fsa]]:
"""Get the best path from a lattice.
Args:
lattice:
The decoding lattice returned by :func:`get_lattice`.
use_double_scores:
True to use double precision floating point in the computation.
False to use single precision.
lm_scale_list:
A list of floats representing LM score scales.
Return:
An FsaVec containing linear paths.
"""
if lm_scale_list is not None:
ans = dict()
saved_am_scores = lattice.scores - lattice.lm_scores
for lm_scale in lm_scale_list:
am_scores = saved_am_scores / lm_scale
lattice.scores = am_scores + lattice.lm_scores
best_path = k2.shortest_path(lattice, use_double_scores=use_double_scores)
key = f"lm_scale_{lm_scale}"
ans[key] = best_path
return ans
return k2.shortest_path(lattice, use_double_scores=use_double_scores)
def nbest_decoding(
lattice: k2.Fsa,
num_paths: int,
use_double_scores: bool = True,
nbest_scale: float = 1.0,
) -> k2.Fsa:
"""It implements something like CTC prefix beam search using n-best lists.
The basic idea is to first extract `num_paths` paths from the given lattice,
build a word sequence from these paths, and compute the total scores
of the word sequence in the tropical semiring. The one with the max score
is used as the decoding output.
Caution:
Don't be confused by `best` in the name `n-best`. Paths are selected
**randomly**, not by ranking their scores.
Hint:
This decoding method is for demonstration only and it does
not produce a lower WER than :func:`one_best_decoding`.
Args:
lattice:
The decoding lattice, e.g., can be the return value of
:func:`get_lattice`. It has 3 axes [utt][state][arc].
num_paths:
It specifies the size `n` in n-best. Note: Paths are selected randomly
and those containing identical word sequences are removed and only one
of them is kept.
use_double_scores:
True to use double precision floating point in the computation.
False to use single precision.
nbest_scale:
It's the scale applied to the `lattice.scores`. A smaller value
leads to more unique paths at the risk of missing the correct path.
Returns:
An FsaVec containing **linear** FSAs. It axes are [utt][state][arc].
"""
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores contains 0s
nbest = nbest.intersect(lattice)
# now nbest.fsa.scores gets assigned
# max_indexes contains the indexes for the path with the maximum score
# within an utterance.
max_indexes = nbest.tot_scores().argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
return best_path
def nbest_oracle(
lattice: k2.Fsa,
num_paths: int,
ref_texts: List[str],
word_table: k2.SymbolTable,
use_double_scores: bool = True,
nbest_scale: float = 0.5,
oov: str = "<UNK>",
) -> Dict[str, List[List[int]]]:
"""Select the best hypothesis given a lattice and a reference transcript.
The basic idea is to extract `num_paths` paths from the given lattice,
unique them, and select the one that has the minimum edit distance with
the corresponding reference transcript as the decoding output.
The decoding result returned from this function is the best result that
we can obtain using n-best decoding with all kinds of rescoring techniques.
This function is useful to tune the value of `nbest_scale`.
Args:
lattice:
An FsaVec with axes [utt][state][arc].
Note: We assume its `aux_labels` contains word IDs.
num_paths:
The size of `n` in n-best.
ref_texts:
A list of reference transcript. Each entry contains space(s)
separated words
word_table:
It is the word symbol table.
use_double_scores:
True to use double precision for computation. False to use
single precision.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
oov:
The out of vocabulary word.
Return:
Return a dict. Its key contains the information about the parameters
when calling this function, while its value contains the decoding output.
`len(ans_dict) == len(ref_texts)`
"""
device = lattice.device
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
hyps = nbest.build_levenshtein_graphs()
oov_id = word_table[oov]
word_ids_list = []
for text in ref_texts:
word_ids = []
for word in text.split():
if word in word_table:
word_ids.append(word_table[word])
else:
word_ids.append(oov_id)
word_ids_list.append(word_ids)
refs = k2.levenshtein_graph(word_ids_list, device=device)
levenshtein_alignment = k2.levenshtein_alignment(
refs=refs,
hyps=hyps,
hyp_to_ref_map=nbest.shape.row_ids(1),
sorted_match_ref=True,
)
tot_scores = levenshtein_alignment.get_tot_scores(
use_double_scores=False, log_semiring=False
)
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
return best_path
def rescore_with_n_best_list(
lattice: k2.Fsa,
G: k2.Fsa,
num_paths: int,
lm_scale_list: List[float],
nbest_scale: float = 1.0,
use_double_scores: bool = True,
) -> Dict[str, k2.Fsa]:
"""Rescore an n-best list with an n-gram LM.
The path with the maximum score is used as the decoding output.
Args:
lattice:
An FsaVec with axes [utt][state][arc]. It must have the following
attributes: ``aux_labels`` and ``lm_scores``. Its labels are
token IDs and ``aux_labels`` word IDs.
G:
An FsaVec containing only a single FSA. It is an n-gram LM.
num_paths:
Size of nbest list.
lm_scale_list:
A list of floats representing LM score scales.
nbest_scale:
Scale to be applied to ``lattice.score`` when sampling paths
using ``k2.random_paths``.
use_double_scores:
True to use double precision during computation. False to use
single precision.
Returns:
A dict of FsaVec, whose key is an lm_scale and the value is the
best decoding path for each utterance in the lattice.
"""
device = lattice.device
assert len(lattice.shape) == 3
assert hasattr(lattice, "aux_labels")
assert hasattr(lattice, "lm_scores")
assert G.shape == (1, None, None)
assert G.device == device
assert hasattr(G, "aux_labels") is False
max_loop_count = 10
loop_count = 0
while loop_count <= max_loop_count:
try:
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores are all 0s at this point
nbest = nbest.intersect(lattice)
break
except RuntimeError as e:
logging.info(f"Caught exception:\n{e}\n")
logging.info(f"num_paths before decreasing: {num_paths}")
num_paths = int(num_paths / 2)
if loop_count >= max_loop_count or num_paths <= 0:
logging.info("Return None as the resulting lattice is too large.")
return None
logging.info(
"This OOM is not an error. You can ignore it. "
"If your model does not converge well, or --max-duration "
"is too large, or the input sound file is difficult to "
"decode, you will meet this exception."
)
logging.info(f"num_paths after decreasing: {num_paths}")
loop_count += 1
# Now nbest.fsa has its scores set
assert hasattr(nbest.fsa, "lm_scores")
am_scores = nbest.compute_am_scores()
nbest = nbest.intersect(G)
# Now nbest contains only lm scores
lm_scores = nbest.tot_scores()
ans = dict()
for lm_scale in lm_scale_list:
tot_scores = am_scores.values / lm_scale + lm_scores.values
tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
key = f"lm_scale_{lm_scale}"
ans[key] = best_path
return ans
def rescore_with_whole_lattice(
lattice: k2.Fsa,
G_with_epsilon_loops: k2.Fsa,
lm_scale_list: Optional[List[float]] = None,
use_double_scores: bool = True,
) -> Union[k2.Fsa, Dict[str, k2.Fsa]]:
"""Intersect the lattice with an n-gram LM and use shortest path
to decode.
The input lattice is obtained by intersecting `HLG` with
a DenseFsaVec, where the `G` in `HLG` is in general a 3-gram LM.
The input `G_with_epsilon_loops` is usually a 4-gram LM. You can consider
this function as a second pass decoding. In the first pass decoding, we
use a small G, while we use a larger G in the second pass decoding.
Args:
lattice:
An FsaVec with axes [utt][state][arc]. Its `aux_lables` are word IDs.
It must have an attribute `lm_scores`.
G_with_epsilon_loops:
An FsaVec containing only a single FSA. It contains epsilon self-loops.
It is an acceptor and its labels are word IDs.
lm_scale_list:
Optional. If none, return the intersection of `lattice` and
`G_with_epsilon_loops`.
If not None, it contains a list of values to scale LM scores.
For each scale, there is a corresponding decoding result contained in
the resulting dict.
use_double_scores:
True to use double precision in the computation.
False to use single precision.
Returns:
If `lm_scale_list` is None, return a new lattice which is the intersection
result of `lattice` and `G_with_epsilon_loops`.
Otherwise, return a dict whose key is an entry in `lm_scale_list` and the
value is the decoding result (i.e., an FsaVec containing linear FSAs).
"""
# Nbest is not used in this function
assert hasattr(lattice, "lm_scores")
assert G_with_epsilon_loops.shape == (1, None, None)
device = lattice.device
lattice.scores = lattice.scores - lattice.lm_scores
# We will use lm_scores from G, so remove lats.lm_scores here
del lattice.lm_scores
assert hasattr(G_with_epsilon_loops, "lm_scores")
# Now, lattice.scores contains only am_scores
# inv_lattice has word IDs as labels.
# Its `aux_labels` is token IDs
inv_lattice = k2.invert(lattice)
num_seqs = lattice.shape[0]
b_to_a_map = torch.zeros(num_seqs, device=device, dtype=torch.int32)
# NOTE: The choice of the threshold list is arbitrary here to avoid OOM.
# You may need to fine tune it.
prune_th_list = [1e-10, 1e-9, 1e-8, 1e-7, 1e-6]
prune_th_list += [1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
max_loop_count = 10
loop_count = 0
while loop_count <= max_loop_count:
try:
rescoring_lattice = k2.intersect_device(
G_with_epsilon_loops,
inv_lattice,
b_to_a_map,
sorted_match_a=True,
)
rescoring_lattice = k2.top_sort(k2.connect(rescoring_lattice))
break
except RuntimeError as e:
logging.info(f"Caught exception:\n{e}\n")
if loop_count >= max_loop_count:
logging.info("Return None as the resulting lattice is too large.")
return None
logging.info(f"num_arcs before pruning: {inv_lattice.arcs.num_elements()}")
logging.info(
"This OOM is not an error. You can ignore it. "
"If your model does not converge well, or --max-duration "
"is too large, or the input sound file is difficult to "
"decode, you will meet this exception."
)
inv_lattice = k2.prune_on_arc_post(
inv_lattice,
prune_th_list[loop_count],
True,
)
logging.info(f"num_arcs after pruning: {inv_lattice.arcs.num_elements()}")
loop_count += 1
# lat has token IDs as labels
# and word IDs as aux_labels.
lat = k2.invert(rescoring_lattice)
if lm_scale_list is None:
return lat
ans = dict()
saved_am_scores = lat.scores - lat.lm_scores
for lm_scale in lm_scale_list:
am_scores = saved_am_scores / lm_scale
lat.scores = am_scores + lat.lm_scores
best_path = k2.shortest_path(lat, use_double_scores=use_double_scores)
key = f"lm_scale_{lm_scale}"
ans[key] = best_path
return ans
def rescore_with_attention_decoder(
lattice: k2.Fsa,
num_paths: int,
model: torch.nn.Module,
memory: torch.Tensor,
memory_key_padding_mask: Optional[torch.Tensor],
sos_id: int,
eos_id: int,
nbest_scale: float = 1.0,
ngram_lm_scale: Optional[float] = None,
attention_scale: Optional[float] = None,
use_double_scores: bool = True,
) -> Dict[str, k2.Fsa]:
"""This function extracts `num_paths` paths from the given lattice and uses
an attention decoder to rescore them. The path with the highest score is
the decoding output.
Args:
lattice:
An FsaVec with axes [utt][state][arc].
num_paths:
Number of paths to extract from the given lattice for rescoring.
model:
A transformer model. See the class "Transformer" in
conformer_ctc/transformer.py for its interface.
memory:
The encoder memory of the given model. It is the output of
the last torch.nn.TransformerEncoder layer in the given model.
Its shape is `(T, N, C)`.
memory_key_padding_mask:
The padding mask for memory with shape `(N, T)`.
sos_id:
The token ID for SOS.
eos_id:
The token ID for EOS.
nbest_scale:
It's the scale applied to `lattice.scores`. A smaller value
leads to more unique paths at the risk of missing the correct path.
ngram_lm_scale:
Optional. It specifies the scale for n-gram LM scores.
attention_scale:
Optional. It specifies the scale for attention decoder scores.
Returns:
A dict of FsaVec, whose key contains a string
ngram_lm_scale_attention_scale and the value is the
best decoding path for each utterance in the lattice.
"""
max_loop_count = 10
loop_count = 0
while loop_count <= max_loop_count:
try:
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores are all 0s at this point
nbest = nbest.intersect(lattice)
break
except RuntimeError as e:
logging.info(f"Caught exception:\n{e}\n")
logging.info(f"num_paths before decreasing: {num_paths}")
num_paths = int(num_paths / 2)
if loop_count >= max_loop_count or num_paths <= 0:
logging.info("Return None as the resulting lattice is too large.")
return None
logging.info(
"This OOM is not an error. You can ignore it. "
"If your model does not converge well, or --max-duration "
"is too large, or the input sound file is difficult to "
"decode, you will meet this exception."
)
logging.info(f"num_paths after decreasing: {num_paths}")
loop_count += 1
# Now nbest.fsa has its scores set.
# Also, nbest.fsa inherits the attributes from `lattice`.
assert hasattr(nbest.fsa, "lm_scores")
am_scores = nbest.compute_am_scores()
ngram_lm_scores = nbest.compute_lm_scores()
# The `tokens` attribute is set inside `compile_hlg.py`
assert hasattr(nbest.fsa, "tokens")
assert isinstance(nbest.fsa.tokens, torch.Tensor)
path_to_utt_map = nbest.shape.row_ids(1).to(torch.long)
# the shape of memory is (T, N, C), so we use axis=1 here
expanded_memory = memory.index_select(1, path_to_utt_map)
if memory_key_padding_mask is not None:
# The shape of memory_key_padding_mask is (N, T), so we
# use axis=0 here.
expanded_memory_key_padding_mask = memory_key_padding_mask.index_select(
0, path_to_utt_map
)
else:
expanded_memory_key_padding_mask = None
# remove axis corresponding to states.
tokens_shape = nbest.fsa.arcs.shape().remove_axis(1)
tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens)
tokens = tokens.remove_values_leq(0)
token_ids = tokens.tolist()
if len(token_ids) == 0:
print("Warning: rescore_with_attention_decoder(): empty token-ids")
return None
nll = model.decoder_nll(
memory=expanded_memory,
memory_key_padding_mask=expanded_memory_key_padding_mask,
token_ids=token_ids,
sos_id=sos_id,
eos_id=eos_id,
)
assert nll.ndim == 2
assert nll.shape[0] == len(token_ids)
attention_scores = -nll.sum(dim=1)
if ngram_lm_scale is None:
ngram_lm_scale_list = [0.01, 0.05, 0.08]
ngram_lm_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
ngram_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
ngram_lm_scale_list += [2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0]
else:
ngram_lm_scale_list = [ngram_lm_scale]
if attention_scale is None:
attention_scale_list = [0.01, 0.05, 0.08]
attention_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
attention_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
attention_scale_list += [2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0]
else:
attention_scale_list = [attention_scale]
ans = dict()
for n_scale in ngram_lm_scale_list:
for a_scale in attention_scale_list:
tot_scores = (
am_scores.values
+ n_scale * ngram_lm_scores.values
+ a_scale * attention_scores
)
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}"
ans[key] = best_path
return ans
def rescore_with_rnn_lm(
lattice: k2.Fsa,
num_paths: int,
rnn_lm_model: torch.nn.Module,
model: torch.nn.Module,
memory: torch.Tensor,
memory_key_padding_mask: Optional[torch.Tensor],
sos_id: int,
eos_id: int,
blank_id: int,
nbest_scale: float = 1.0,
ngram_lm_scale: Optional[float] = None,
attention_scale: Optional[float] = None,
rnn_lm_scale: Optional[float] = None,