-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
4,339 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# The Matplotlib Jupyter Widget Backend\n", | ||
"\n", | ||
"Enabling interaction with matplotlib charts in the Jupyter notebook and JupyterLab\n", | ||
"\n", | ||
"https://github.com/matplotlib/jupyter-matplotlib" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Enabling the `widget` backend.\n", | ||
"# This requires jupyter-matplotlib a.k.a. ipympl.\n", | ||
"# ipympl can be install via pip or conda.\n", | ||
"%matplotlib widget" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "7da8f712c59e40a78067301f5a5c75c2", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"FigureCanvasNbAgg()" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# Testing matplotlib interactions with a simple plot\n", | ||
"\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"plt.figure(1)\n", | ||
"plt.plot(np.sin(np.linspace(0, 20, 100)))\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "0a7c53ea26d9404e81f721cd7fa2af54", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"FigureCanvasNbAgg()" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# A more complex example from the matplotlib gallery\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"np.random.seed(0)\n", | ||
"\n", | ||
"n_bins = 10\n", | ||
"x = np.random.randn(1000, 3)\n", | ||
"\n", | ||
"fig, axes = plt.subplots(nrows=2, ncols=2)\n", | ||
"ax0, ax1, ax2, ax3 = axes.flatten()\n", | ||
"\n", | ||
"colors = ['red', 'tan', 'lime']\n", | ||
"ax0.hist(x, n_bins, density=1, histtype='bar', color=colors, label=colors)\n", | ||
"ax0.legend(prop={'size': 10})\n", | ||
"ax0.set_title('bars with legend')\n", | ||
"\n", | ||
"ax1.hist(x, n_bins, density=1, histtype='bar', stacked=True)\n", | ||
"ax1.set_title('stacked bar')\n", | ||
"\n", | ||
"ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False)\n", | ||
"ax2.set_title('stack step (unfilled)')\n", | ||
"\n", | ||
"# Make a multiple-histogram of data-sets with different length.\n", | ||
"x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]]\n", | ||
"ax3.hist(x_multi, n_bins, histtype='bar')\n", | ||
"ax3.set_title('different sample sizes')\n", | ||
"\n", | ||
"\n", | ||
"fig.tight_layout()\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "09b306227930436c927d73f4abe4fc25", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"HBox(children=(FloatSlider(value=1.0, max=2.0, min=0.02, orientation='vertical'), FigureCanvasNbAgg()))" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# When using the `widget` backend from ipympl,\n", | ||
"# fig.canvas is a proper Jupyter interactive widget, which can be embedded in\n", | ||
"# Layout classes like HBox and Vbox.\n", | ||
"\n", | ||
"# One can bound figure attributes to other widget values.\n", | ||
"\n", | ||
"from ipywidgets import HBox, FloatSlider\n", | ||
"\n", | ||
"plt.ioff()\n", | ||
"plt.clf()\n", | ||
"\n", | ||
"slider = FloatSlider(\n", | ||
" orientation='vertical',\n", | ||
" value=1.0,\n", | ||
" min=0.02,\n", | ||
" max=2.0\n", | ||
")\n", | ||
"\n", | ||
"fig = plt.figure(3)\n", | ||
"\n", | ||
"x = np.linspace(0, 20, 500)\n", | ||
"\n", | ||
"lines = plt.plot(x, np.sin(slider.value * x))\n", | ||
"\n", | ||
"def update_lines(change):\n", | ||
" lines[0].set_data(x, np.sin(change.new * x))\n", | ||
" fig.canvas.draw()\n", | ||
" fig.canvas.flush_events()\n", | ||
"\n", | ||
"slider.observe(update_lines, names='value')\n", | ||
"\n", | ||
"HBox([slider, fig.canvas])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.0" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.