Skip to content

Files

Latest commit

 

History

History
 
 

Offline_RL_2D

Toy2D experiments

For reproducing toy 2D experiments in the paper, run

$ TASK="rings"; setting="CEP_alpha3"; seed=0; python3 -u bandit_toy.py --expid $TASK${seed}${setting} --env $TASK --diffusion_steps 15 --seed ${seed} --alpha 3 --method "CEP"

Checkpoints will be stored in the ./models folder. Visualization scripts are provided in draw_toy.ipynb. You can also download pretrained checkpoints from this url link (toy_model).

D4RL experiments

Requirements

Installations of PyTorch, MuJoCo, and D4RL are needed.

Running

To pretrain the behavior model, run

$ TASK="walker2d-medium-expert-v2"; seed=0; setting="reproduce"; python3 -u train_behavior.py --expid $TASK${seed}${setting} --env $TASK --seed ${seed}

The pretrained behavior model will be stored in the ./models_rl/. Once we have the pretrained checkpoint at /path/to/pretrained/ckpt.pth (download url), we can train the critic model:

$ TASK="walker2d-medium-expert-v2"; seed=0; setting="reproduce"; python3 -u train_critic.py --actor_load_path /path/to/pretrained/ckpt.pth --expid $TASK${seed}${setting} --env $TASK --diffusion_steps 15 --seed ${seed} --alpha 3 --q_alpha 1 --method "CEP"