Skip to content

This repository contains implementation of online, offline and self-distillation methods:

License

Notifications You must be signed in to change notification settings

sun1lach/kd-custom-architectures

Repository files navigation

Knowledge Distillation on Custom Architectures

This repository contains implementation of online, offline and self-distillation methods

  • Offline Distillation

    • TAKD: Improved Knowledge Distillation via Teacher Assistant.
  • Online Distillation:

    • RCO: Knowledge Distillation via Route Constrained Optimization.
  • Self-Knowledge Distillation:

    • CSKD: Regularizing class-wise predictions via self-knowledge distillation.
    • Self-Training: Revisit Knowledge Distillation – A Teacher-free framework.

Baseline Accuracies

Custom and Standard Architectures

DW - Depth-wise separable convolutions

No Model Trainable Parameters Params size (MB) Estimated Total Size (MB) "Baseline accuracy (%) CIFAR-10" "Baseline Accuracy (%) FMNIST"
1 model_1M_wo_dw 1,180,970 4.51 8.26 87.8 92.67
2 model_1M_w_dw 1,159,474 4.42 16.64 87.95 91.89
3 model_600k_wo_dw 590,378 2.25 5.64 88.45 92.93
4 model_600k_w_dw 599,913 2.29 13.41 88.71 92.56
5 model_340k_wo_dw 340,010 1.30 3.86 87.7 93.17
6 model_340k_w_dw 344,508 1.31 4.65 85.79 90.28
7 model_143k_wo_dw 143,218 0.55 2.06 83.59 92.68
8 model_143k_w_dw 143,406 0.55 2.48 83.93 90
9 model_25k_wo_dw 25,298 0.10 0.99 76.54 90.7
10 model_25k_w_dw 25,612 0.10 0.95 72.58 90.27
11 ResNet-18 11,181,642 42.65 43.95 82.59 89.06
12 ResNet-34 21,289,802 81.21 83.19 84.44 87.18
13 ResNet-50 23,528,522 89.75 95.63 82.47 90.21
14 ResNet-101 42,520,650 162.20 171 80.73 88.47
15 ResNet-152 58,164,298 221.88 234.29 79.82 88.58
16 EfficientNet B5 28,361,274 108.19 130.08 89.59 89.78
17 EfficientNet B7 63,812,570 243.43 281.5 91.08 92.01

About

This repository contains implementation of online, offline and self-distillation methods:

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages