-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Dynamic programming added to NDP schemes in DEM toolbox/DEM/spm_MDP_DP.m
SVN r6451
- Loading branch information
Showing
3 changed files
with
318 additions
and
137 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
function [B0,BV] = spm_MDP_DP(MDP,OPTION) | ||
% dynamic programming using active inference | ||
% FORMAT [MDP] = spm_MDP_DP(MDP,OPTION,W) | ||
% | ||
% MDP.A(O,N) - Likelihood of O outcomes given N hidden states | ||
% MDP.B{M}(N,N) - transition probabilities among hidden states (priors) | ||
% MDP.C(N,1) - prior preferences (prior over future states) | ||
% | ||
% MDP.V(T - 1,P) - P allowable policies (control sequences) | ||
% | ||
% OPTION - {'Free Energy' | 'KL Control' | 'Expected Utility'}; | ||
% | ||
% B0 - optimal state action policy or transition matrix | ||
% BV - corresponding policy using value iteration | ||
%__________________________________________________________________________ | ||
% Copyright (C) 2005 Wellcome Trust Centre for Neuroimaging | ||
|
||
% Karl Friston | ||
% $Id: spm_MDP_DP.m 6451 2015-05-26 09:26:03Z karl $ | ||
|
||
% set up and preliminaries | ||
%========================================================================== | ||
|
||
% options | ||
%-------------------------------------------------------------------------- | ||
if nargin < 2, OPTION = 'Free Energy'; end | ||
|
||
% generative model and initial states | ||
%-------------------------------------------------------------------------- | ||
T = size(MDP.V,1) + 1; % number of outcomes | ||
Ns = size(MDP.B{1},1); % number of hidden states | ||
Nu = size(MDP.B,2); % number of hidden controls | ||
p0 = exp(-16); % smallest probability | ||
|
||
% likelihood model (for a partially observed MDP implicit in G) | ||
%-------------------------------------------------------------------------- | ||
try | ||
A = MDP.A + p0; | ||
catch | ||
A = speye(Ns,Ns) + p0; | ||
end | ||
A = A*diag(1./sum(A)); % normalise | ||
lnA = log(A); % log probabilities | ||
H = sum(A.*lnA)'; % negentropy of observations | ||
|
||
% transition probabilities (priors) | ||
%-------------------------------------------------------------------------- | ||
for j = 1:Nu | ||
B{j} = MDP.B{1,j} + p0; | ||
B{j} = B{j}*diag(1./sum(B{j})); | ||
lnB{j} = log(B{j}); | ||
end | ||
|
||
% terminal probabilities (priors) | ||
%-------------------------------------------------------------------------- | ||
try | ||
C = MDP.C + p0; | ||
if size(C,2) ~= T | ||
C = C(:,end)*ones(1,T); | ||
end | ||
catch | ||
C = ones(Ns,T); | ||
end | ||
C = C*diag(1./sum(C)); | ||
lnC = log(C); | ||
|
||
% policies, states and their expectations | ||
%-------------------------------------------------------------------------- | ||
V = MDP.V; | ||
Np = size(V,2); % number of allowable policies | ||
|
||
|
||
|
||
% policy iteration | ||
%========================================================================== | ||
for s = 1:Ns | ||
|
||
|
||
% Variational iterations (hidden states) | ||
%====================================================================== | ||
x = zeros(Ns,T,Np); | ||
for k = 1:Np | ||
|
||
for i = 1:2 | ||
|
||
% hiddens states (x) | ||
%-------------------------------------------------------------- | ||
x(s,1,k) = 1; | ||
|
||
% future states | ||
%-------------------------------------------------------------- | ||
for j = 2:(T - 1) | ||
v = lnB{V(j - 1,k)} *x(:,j - 1,k) + ... | ||
lnB{V(j, k)}'*x(:,j + 1,k); | ||
x(:,j,k) = spm_softmax(v); | ||
end | ||
|
||
% last state | ||
%-------------------------------------------------------------- | ||
v = lnB{V(T - 1,k)} *x(:,T - 1,k); | ||
x(:,T,k) = spm_softmax(v); | ||
|
||
end | ||
|
||
end | ||
|
||
% value of policies (Q) | ||
%====================================================================== | ||
Q = zeros(Np,1); | ||
for k = 1:Np | ||
|
||
% path integral of expected free energy | ||
%------------------------------------------------------------------ | ||
for j = 2:T | ||
|
||
switch OPTION | ||
case{'Free Energy','FE'} | ||
v = lnC(:,j) - log(x(:,j,k)) + H; | ||
|
||
case{'KL Control','KL'} | ||
v = lnC(:,j) - log(x(:,j,k)); | ||
|
||
case{'Expected Utility','EU','RL'} | ||
v = lnC(:,j); | ||
|
||
otherwise | ||
disp(['unkown option: ' OPTION]) | ||
end | ||
Q(k) = Q(k) + v'*x(:,j,k); | ||
|
||
end | ||
end | ||
|
||
% optimal transition from this state | ||
%====================================================================== | ||
[u,k] = max(Q); | ||
B0(:,s) = lnB{V(1,k)}(:,s); | ||
|
||
end | ||
|
||
if nargout < 2, return, end | ||
|
||
% value iteration | ||
%========================================================================== | ||
V = zeros(Ns,1); | ||
lnC = lnC(:,end); | ||
g = 1 - 1/T; | ||
for i = 1:32 | ||
for s = 1:Ns | ||
|
||
% value of actions (Q) | ||
%------------------------------------------------------------------ | ||
Q = zeros(Nu,1); | ||
for k = 1:Nu | ||
Q(k) = B{1,k}(:,s)'*(lnC + g*V); | ||
end | ||
|
||
% optimal transition from this state | ||
%------------------------------------------------------------------ | ||
[u,k] = max(Q); | ||
BV(:,s) = B{1,k}(:,s); | ||
|
||
end | ||
|
||
% optimal transition from this state | ||
%---------------------------------------------------------------------- | ||
dV = BV'*(lnC + g*V) - V; | ||
V = V + dV; | ||
|
||
% convergence | ||
%---------------------------------------------------------------------- | ||
if norm(dV) < 1e-2, break, end | ||
|
||
end | ||
|
||
|
Oops, something went wrong.