-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathspm_Markov_blanket.m
167 lines (142 loc) · 5.59 KB
/
spm_Markov_blanket.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
function [x,y] = spm_Markov_blanket(J,z,m,R)
% Markovian partition
% FORMAT [x,y] = spm_Markov_blanket(J,z,m,R)
% J - Jacobian
% z - {1 x N} partition of states (indices)
% m - number of internal states [default: 3]
%
% x - {3 x n} particular partition of state indices
% x{1,j} - active states of j-th partition
% x{2,j} - sensory states of j-th partition
% x{3,j} - internal states of j-th partition
%
% y - {3 x n} particular partition of partition indices
% y{1,j} - active states of j-th partition
% y{2,j} - sensory states of j-th partition
% y{3,j} - internal states of j-th partition
%
% Partition or Grouping (coarse-scaling) operator
%__________________________________________________________________________
% Karl Friston
% Copyright (C) 2019-2022 Wellcome Centre for Human Neuroimaging
% preliminaries
%--------------------------------------------------------------------------
if nargin < 3, m = 3; end % maximum size of internal states
if nargin < 4, R = []; end % restiction matrix
% Adjacency matrix (over z)
%--------------------------------------------------------------------------
nz = length(z); % number of partitions
for i = 1:nz
for j = 1:nz
Lij = J(z{i},z{j});
if any(any(Lij))
L(i,j) = norm(full(Lij));
else
L(i,j) = 0;
end
end
end
% supress coupling (and apply restriction if specified)
%--------------------------------------------------------------------------
% if numel(R), L = L.*R; end
L(L < 1/64) = 0;
% get Markov blanket matrix
%--------------------------------------------------------------------------
B = L + L' + L'*L;
B = B - diag(diag(B));
B = sparse(B);
% scaling space (defined by graph Laplacian)
%--------------------------------------------------------------------------
% G = L + L';
% G = G - diag(diag(G));
% G = G - diag(sum(G));
% G = expm(G);
% recursive (particular) partition into internal, sensory and active states
%--------------------------------------------------------------------------
nn = zeros(nz,1);
for i = 1:nz
% internal states (defined by graph Laplacian)
%----------------------------------------------------------------------
jj = ~(B*nn) & ~nn;
ij = find(jj);
if any(jj)
% find densely coupled internal states (using the eigenmode of B)
%------------------------------------------------------------------
[v,s] = svds(B(ij,ij),1);
[v,j] = sort(abs(v),'descend');
j = ij(j(1:min(m,numel(j))));
jj = sparse(j,1,1,size(L,1),1) & jj; % internal states
bb = B*jj & ~jj & ~nn; % Markov blanket
ee = ~bb & ~jj & ~nn; % external states
b = find(bb);
e = find(ee);
s = b(find( any(L(b,e),2)));
a = b(find(~any(L(b,e),2)));
% indices of individual states in the i-th particle
%------------------------------------------------------------------
x{1,i} = spm_cat(z(a));
x{2,i} = spm_cat(z(s));
x{3,i} = spm_cat(z(j));
% states accounted for (nn)
%------------------------------------------------------------------
nn = nn | bb | jj;
else
% no internal states - find active states (not influenced by e)
%------------------------------------------------------------------
j = ~any(L(~nn,nn),2);
if any(j)
% sensory states connected with active states
%--------------------------------------------------------------
a = find(~nn);
a = a(find(j,1));
aa = sparse(a,1,1,size(L,1),1);
ss = (L*aa | L'*aa) & ~aa & ~nn;
a = find(aa);
s = find(ss);
j = [];
% indices of individual states in the i-th particle
%--------------------------------------------------------------
x{1,i} = spm_cat(z(a));
x{2,i} = spm_cat(z(s));
x{3,i} = [];
% states accounted for (nn)
%--------------------------------------------------------------
nn = nn | aa | ss;
elseif any(~nn)
% sensory states connected with sensory states
%--------------------------------------------------------------
s = find(~nn);
ss = sparse(s(1),1,1,nz,1);
ss = ss | B*ss & ~nn;
s = find(ss);
a = [];
j = [];
% indices of individual states in the i-th particle
%--------------------------------------------------------------
x{1,i} = [];
x{2,i} = spm_cat(z(s));
x{3,i} = [];
% states accounted for (nn)
%--------------------------------------------------------------
nn = nn | ss;
end
end
% indices of partitions (i.e., n-states) in the i-th particle
%----------------------------------------------------------------------
y{1,i} = a;
y{2,i} = s;
y{3,i} = j;
% remove isolated (internal) states
%----------------------------------------------------------------------
if all(nn)
j = [];
for n = 1:size(x,2)
if any(x{1,n}) || any(x{2,n})
j = [j,n];
end
end
x = x(:,j);
y = y(:,j);
break
end
end