-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathspm_NESS_F.m
85 lines (72 loc) · 2.82 KB
/
spm_NESS_F.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function [F] = spm_NESS_F(P,M)
% Generate flow (f) at locations (U.X)
% FORMAT [F,S,Q,L,H,D] = spm_NESS_gen(P,M)
% FORMAT [F,S,Q,L,H,D] = spm_NESS_gen(P,M,U)
% FORMAT [F,S,Q,L,H,D] = spm_NESS_gen(P,M,X)
%--------------------------------------------------------------------------
% P.Qp - polynomial coefficients for solenoidal operator
% P.Sp - polynomial coefficients for potential
%
% F - polynomial approximation to flow
% S - negative potential (log NESS density)
% Q - flow operator (R + G) with solenoidal and symmetric parts
% L - correction term for derivatives of solenoidal flow
% H - Hessian
% D - potential gradients
%
% U = spm_ness_U(M)
%--------------------------------------------------------------------------
% M - model specification structure
% Required fields:
% M.X - sample points
% M.W - (n x n) - precision matrix of random fluctuations
% M.K - order of polynomial expansion
%__________________________________________________________________________
% Karl Friston
% Copyright (C) 2021-2022 Wellcome Centre for Human Neuroimaging
% get basis or expansion from M.X (or M.x)
%--------------------------------------------------------------------------
% get basis set and derivatives
%----------------------------------------------------------------------
U = spm_ness_U(M);
% dimensions and correction terms to flow operator
%==========================================================================
n = numel(U.D);
% predicted flow: F = Q*D*S - L
%--------------------------------------------------------------------------
DS = zeros(n,1);
for j = 1:n
DS(j) = U.D{j}*P.Sp;
end
% quadratic forms
%==========================================================================
ih = [2,3];
is = 1;
ia = 4;
im = [5,6];
ip = [1,4,5,6]; % particular states
in = [2:n];
x = M.X';
% generative model (joint density)
%--------------------------------------------------------------------------
[m,C] = spm_ness_cond(n,3,P.Sp);
Pi = inv(C);
Ji = (x - m)'*Pi*(x - m)/2;
dJidx = Pi*(x - m)
% marginal over particular states (free energy)
%--------------------------------------------------------------------------
Pj = inv(C(ip,ip));
Jj = (x(ip) - m(ip))'*Pj*(x(ip) - m(ip))/2;
dJjdp = Pj*(x(ip) - m(ip))
% explicit form for free energy
%==========================================================================
% likelihood
%--------------------------------------------------------------------------
[ml,Cl] = spm_ness_cond(n,3,P.Sp,in,x(in));
Pl = inv(Cl);
% Prior
%--------------------------------------------------------------------------
mp = m(in);
Pp = inv(C(in,in));
F = (x(in) - mp)'*Pp*(x(in) - mp)/2;
dFdp = Pp*(x(in) - mp)