-
Notifications
You must be signed in to change notification settings - Fork 1
/
packet.go
695 lines (650 loc) · 21.5 KB
/
packet.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
// Copyright 2012 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
package gopacket
import (
"bytes"
"encoding/hex"
"errors"
"fmt"
"io"
"os"
"reflect"
"runtime/debug"
"time"
)
type CaptureInfo struct {
// Timestamp is the time the packet was captured, if that is known.
Timestamp time.Time
// CaptureLength is the total number of bytes read off of the wire.
CaptureLength int
// Length is the size of the original packet. Should always be >=
// CaptureLength.
Length int
}
// PacketMetadata contains metadata for a packet.
type PacketMetadata struct {
CaptureInfo
// Truncated is true if packet decoding logic detects that there are fewer
// bytes in the packet than are detailed in various headers (for example, if
// the number of bytes in the IPv4 contents/payload is less than IPv4.Length).
// This is also set automatically for packets captured off the wire if
// CaptureInfo.CaptureLength < CaptureInfo.Length.
Truncated bool
}
// Packet is the primary object used by gopacket. Packets are created by a
// Decoder's Decode call. A packet is made up of a set of Data, which
// is broken into a number of Layers as it is decoded.
type Packet interface {
//// Functions for outputting the packet as a human-readable string:
//// ------------------------------------------------------------------
// String returns a human-readable string representation of the packet.
// It uses LayerString on each layer to output the layer.
String() string
// Dump returns a verbose human-readable string representation of the packet,
// including a hex dump of all layers. It uses LayerDump on each layer to
// output the layer.
Dump() string
//// Functions for accessing arbitrary packet layers:
//// ------------------------------------------------------------------
// Layers returns all layers in this packet, computing them as necessary
Layers() []Layer
// Layer returns the first layer in this packet of the given type, or nil
Layer(LayerType) Layer
// LayerClass returns the first layer in this packet of the given class,
// or nil.
LayerClass(LayerClass) Layer
//// Functions for accessing specific types of packet layers. These functions
//// return the first layer of each type found within the packet.
//// ------------------------------------------------------------------
// LinkLayer returns the first link layer in the packet
LinkLayer() LinkLayer
// NetworkLayer returns the first network layer in the packet
NetworkLayer() NetworkLayer
// TransportLayer returns the first transport layer in the packet
TransportLayer() TransportLayer
// ApplicationLayer returns the first application layer in the packet
ApplicationLayer() ApplicationLayer
// ErrorLayer is particularly useful, since it returns nil if the packet
// was fully decoded successfully, and non-nil if an error was encountered
// in decoding and the packet was only partially decoded. Thus, its output
// can be used to determine if the entire packet was able to be decoded.
ErrorLayer() ErrorLayer
//// Functions for accessing data specific to the packet:
//// ------------------------------------------------------------------
// Data returns the set of bytes that make up this entire packet.
Data() []byte
// Metadata returns packet metadata associated with this packet.
Metadata() *PacketMetadata
}
// packet contains all the information we need to fulfill the Packet interface,
// and its two "subclasses" (yes, no such thing in Go, bear with me),
// eagerPacket and lazyPacket, provide eager and lazy decoding logic around the
// various functions needed to access this information.
type packet struct {
// data contains the entire packet data for a packet
data []byte
// initialLayers is space for an initial set of layers already created inside
// the packet.
initialLayers [6]Layer
// layers contains each layer we've already decoded
layers []Layer
// last is the last layer added to the packet
last Layer
// metadata is the PacketMetadata for this packet
metadata PacketMetadata
// Pointers to the various important layers
link LinkLayer
network NetworkLayer
transport TransportLayer
application ApplicationLayer
failure ErrorLayer
}
func (p *packet) SetTruncated() {
p.metadata.Truncated = true
}
func (p *packet) SetLinkLayer(l LinkLayer) {
if p.link == nil {
p.link = l
}
}
func (p *packet) SetNetworkLayer(l NetworkLayer) {
if p.network == nil {
p.network = l
}
}
func (p *packet) SetTransportLayer(l TransportLayer) {
if p.transport == nil {
p.transport = l
}
}
func (p *packet) SetApplicationLayer(l ApplicationLayer) {
if p.application == nil {
p.application = l
}
}
func (p *packet) SetErrorLayer(l ErrorLayer) {
if p.failure == nil {
p.failure = l
}
}
func (p *packet) AddLayer(l Layer) {
p.layers = append(p.layers, l)
p.last = l
}
func (p *packet) DumpPacketData() {
fmt.Fprint(os.Stderr, p.packetDump())
os.Stderr.Sync()
}
func (p *packet) Metadata() *PacketMetadata {
return &p.metadata
}
func (p *packet) Data() []byte {
return p.data
}
func (p *packet) addFinalDecodeError(err error, stack []byte) {
fail := &DecodeFailure{err: err, stack: stack}
if p.last == nil {
fail.data = p.data
} else {
fail.data = p.last.LayerPayload()
}
p.AddLayer(fail)
p.SetErrorLayer(fail)
}
func (p *packet) recoverDecodeError() {
if r := recover(); r != nil {
p.addFinalDecodeError(fmt.Errorf("%v", r), debug.Stack())
}
}
// LayerString outputs an individual layer as a string. The layer is output
// in a single line, with no trailing newline. This function is specifically
// designed to do the right thing for most layers... it follows the following
// rules:
// * If the Layer has a String function, just output that.
// * Otherwise, output all exported fields in the layer, recursing into
// exported slices and structs.
// NOTE: This is NOT THE SAME AS fmt's "%#v". %#v will output both exported
// and unexported fields... many times packet layers contain unexported stuff
// that would just mess up the output of the layer, see for example the
// Payload layer and it's internal 'data' field, which contains a large byte
// array that would really mess up formatting.
func LayerString(l Layer) string {
return fmt.Sprintf("%v\t%s", l.LayerType(), layerString(l, false, false))
}
// Dumper dumps verbose information on a value. If a layer type implements
// Dumper, then its LayerDump() string will include the results in its output.
type Dumper interface {
Dump() string
}
// LayerDump outputs a very verbose string representation of a layer. Its
// output is a concatenation of LayerString(l) and hex.Dump(l.LayerContents()).
// It contains newlines and ends with a newline.
func LayerDump(l Layer) string {
var b bytes.Buffer
b.WriteString(LayerString(l))
b.WriteByte('\n')
if d, ok := l.(Dumper); ok {
dump := d.Dump()
if dump != "" {
b.WriteString(dump)
if dump[len(dump)-1] != '\n' {
b.WriteByte('\n')
}
}
}
b.WriteString(hex.Dump(l.LayerContents()))
return b.String()
}
// layerString outputs, recursively, a layer in a "smart" way. See docs for
// LayerString for more details.
//
// Params:
// i - value to write out
// anonymous: if we're currently recursing an anonymous member of a struct
// writeSpace: if we've already written a value in a struct, and need to
// write a space before writing more. This happens when we write various
// anonymous values, and need to keep writing more.
func layerString(i interface{}, anonymous bool, writeSpace bool) string {
// Let String() functions take precedence.
if s, ok := i.(fmt.Stringer); ok {
return s.String()
}
// Reflect, and spit out all the exported fields as key=value.
v := reflect.ValueOf(i)
switch v.Type().Kind() {
case reflect.Interface, reflect.Ptr:
if v.IsNil() {
return "nil"
}
r := v.Elem()
return layerString(r.Interface(), anonymous, writeSpace)
case reflect.Struct:
var b bytes.Buffer
typ := v.Type()
if !anonymous {
b.WriteByte('{')
}
for i := 0; i < v.NumField(); i++ {
// Check if this is upper-case.
ftype := typ.Field(i)
f := v.Field(i)
if ftype.Anonymous {
anonStr := layerString(f.Interface(), true, writeSpace)
writeSpace = writeSpace || anonStr != ""
b.WriteString(anonStr)
} else if ftype.PkgPath == "" { // exported
if writeSpace {
b.WriteByte(' ')
}
writeSpace = true
fmt.Fprintf(&b, "%s=%s", typ.Field(i).Name, layerString(f.Interface(), false, writeSpace))
}
}
if !anonymous {
b.WriteByte('}')
}
return b.String()
case reflect.Slice:
var b bytes.Buffer
b.WriteByte('[')
if v.Len() > 4 {
b.WriteString("...")
} else {
for j := 0; j < v.Len(); j++ {
if j != 0 {
b.WriteString(", ")
}
b.WriteString(layerString(v.Index(j).Interface(), false, false))
}
}
b.WriteByte(']')
return b.String()
}
return fmt.Sprintf("%v", v.Interface())
}
func (p *packet) packetString() string {
var b bytes.Buffer
fmt.Fprintf(&b, "PACKET: %d bytes", len(p.Data()))
if p.metadata.Truncated {
b.WriteString(", truncated")
}
if p.metadata.Length > 0 {
fmt.Fprintf(&b, ", wire length %d cap length %d", p.metadata.Length, p.metadata.CaptureLength)
}
if !p.metadata.Timestamp.IsZero() {
fmt.Fprintf(&b, " @ %v", p.metadata.Timestamp)
}
b.WriteByte('\n')
for i, l := range p.layers {
fmt.Fprintf(&b, "- Layer %d (%02d bytes) = %s\n", i+1, len(l.LayerContents()), LayerString(l))
}
return b.String()
}
func (p *packet) packetDump() string {
var b bytes.Buffer
fmt.Fprintf(&b, "-- FULL PACKET DATA (%d bytes) ------------------------------------\n%s", len(p.data), hex.Dump(p.data))
for i, l := range p.layers {
fmt.Fprintf(&b, "--- Layer %d ---\n%s", i+1, LayerDump(l))
}
return b.String()
}
// eagerPacket is a packet implementation that does eager decoding. Upon
// initial construction, it decodes all the layers it can from packet data.
// eagerPacket implements Packet and PacketBuilder.
type eagerPacket struct {
packet
}
var nilDecoderError = errors.New("NextDecoder passed nil decoder, probably an unsupported decode type")
func (p *eagerPacket) NextDecoder(next Decoder) error {
if next == nil {
return nilDecoderError
}
if p.last == nil {
return errors.New("NextDecoder called, but no layers added yet")
}
d := p.last.LayerPayload()
if len(d) == 0 {
return nil
}
// Since we're eager, immediately call the next decoder.
return next.Decode(d, p)
}
func (p *eagerPacket) initialDecode(dec Decoder) {
defer p.recoverDecodeError()
err := dec.Decode(p.data, p)
if err != nil {
p.addFinalDecodeError(err, nil)
}
}
func (p *eagerPacket) LinkLayer() LinkLayer {
return p.link
}
func (p *eagerPacket) NetworkLayer() NetworkLayer {
return p.network
}
func (p *eagerPacket) TransportLayer() TransportLayer {
return p.transport
}
func (p *eagerPacket) ApplicationLayer() ApplicationLayer {
return p.application
}
func (p *eagerPacket) ErrorLayer() ErrorLayer {
return p.failure
}
func (p *eagerPacket) Layers() []Layer {
return p.layers
}
func (p *eagerPacket) Layer(t LayerType) Layer {
for _, l := range p.layers {
if l.LayerType() == t {
return l
}
}
return nil
}
func (p *eagerPacket) LayerClass(lc LayerClass) Layer {
for _, l := range p.layers {
if lc.Contains(l.LayerType()) {
return l
}
}
return nil
}
func (p *eagerPacket) String() string { return p.packetString() }
func (p *eagerPacket) Dump() string { return p.packetDump() }
// lazyPacket does lazy decoding on its packet data. On construction it does
// no initial decoding. For each function call, it decodes only as many layers
// as are necessary to compute the return value for that function.
// lazyPacket implements Packet and PacketBuilder.
type lazyPacket struct {
packet
next Decoder
}
func (p *lazyPacket) NextDecoder(next Decoder) error {
if next == nil {
return nilDecoderError
}
p.next = next
return nil
}
func (p *lazyPacket) decodeNextLayer() {
if p.next == nil {
return
}
d := p.data
if p.last != nil {
d = p.last.LayerPayload()
}
next := p.next
p.next = nil
// We've just set p.next to nil, so if we see we have no data, this should be
// the final call we get to decodeNextLayer if we return here.
if len(d) == 0 {
return
}
defer p.recoverDecodeError()
err := next.Decode(d, p)
if err != nil {
p.addFinalDecodeError(err, nil)
}
}
func (p *lazyPacket) LinkLayer() LinkLayer {
for p.link == nil && p.next != nil {
p.decodeNextLayer()
}
return p.link
}
func (p *lazyPacket) NetworkLayer() NetworkLayer {
for p.network == nil && p.next != nil {
p.decodeNextLayer()
}
return p.network
}
func (p *lazyPacket) TransportLayer() TransportLayer {
for p.transport == nil && p.next != nil {
p.decodeNextLayer()
}
return p.transport
}
func (p *lazyPacket) ApplicationLayer() ApplicationLayer {
for p.application == nil && p.next != nil {
p.decodeNextLayer()
}
return p.application
}
func (p *lazyPacket) ErrorLayer() ErrorLayer {
for p.failure == nil && p.next != nil {
p.decodeNextLayer()
}
return p.failure
}
func (p *lazyPacket) Layers() []Layer {
for p.next != nil {
p.decodeNextLayer()
}
return p.layers
}
func (p *lazyPacket) Layer(t LayerType) Layer {
for _, l := range p.layers {
if l.LayerType() == t {
return l
}
}
numLayers := len(p.layers)
for p.next != nil {
p.decodeNextLayer()
for _, l := range p.layers[numLayers:] {
if l.LayerType() == t {
return l
}
}
numLayers = len(p.layers)
}
return nil
}
func (p *lazyPacket) LayerClass(lc LayerClass) Layer {
for _, l := range p.layers {
if lc.Contains(l.LayerType()) {
return l
}
}
numLayers := len(p.layers)
for p.next != nil {
p.decodeNextLayer()
for _, l := range p.layers[numLayers:] {
if lc.Contains(l.LayerType()) {
return l
}
}
numLayers = len(p.layers)
}
return nil
}
func (p *lazyPacket) String() string { p.Layers(); return p.packetString() }
func (p *lazyPacket) Dump() string { p.Layers(); return p.packetDump() }
// DecodeOptions tells gopacket how to decode a packet.
type DecodeOptions struct {
// Lazy decoding decodes the minimum number of layers needed to return data
// for a packet at each function call. Be careful using this with concurrent
// packet processors, as each call to packet.* could mutate the packet, and
// two concurrent function calls could interact poorly.
Lazy bool
// NoCopy decoding doesn't copy its input buffer into storage that's owned by
// the packet. If you can guarantee that the bytes underlying the slice
// passed into NewPacket aren't going to be modified, this can be faster. If
// there's any chance that those bytes WILL be changed, this will invalidate
// your packets.
NoCopy bool
}
// Default decoding provides the safest (but slowest) method for decoding
// packets. It eagerly processes all layers (so it's concurrency-safe) and it
// copies its input buffer upon creation of the packet (so the packet remains
// valid if the underlying slice is modified. Both of these take time,
// though, so beware. If you can guarantee that the packet will only be used
// by one goroutine at a time, set Lazy decoding. If you can guarantee that
// the underlying slice won't change, set NoCopy decoding.
var Default DecodeOptions = DecodeOptions{}
// Lazy is a DecodeOptions with just Lazy set.
var Lazy DecodeOptions = DecodeOptions{Lazy: true}
// NoCopy is a DecodeOptions with just NoCopy set.
var NoCopy DecodeOptions = DecodeOptions{NoCopy: true}
// NewPacket creates a new Packet object from a set of bytes. The
// firstLayerDecoder tells it how to interpret the first layer from the bytes,
// future layers will be generated from that first layer automatically.
func NewPacket(data []byte, firstLayerDecoder Decoder, options DecodeOptions) Packet {
if !options.NoCopy {
dataCopy := make([]byte, len(data))
copy(dataCopy, data)
data = dataCopy
}
if options.Lazy {
p := &lazyPacket{
packet: packet{data: data},
next: firstLayerDecoder,
}
p.layers = p.initialLayers[:0]
// Crazy craziness:
// If the following return statemet is REMOVED, and Lazy is FALSE, then
// eager packet processing becomes 17% FASTER. No, there is no logical
// explanation for this. However, it's such a hacky micro-optimization that
// we really can't rely on it. It appears to have to do with the size the
// compiler guesses for this function's stack space, since one symptom is
// that with the return statement in place, we more than double calls to
// runtime.morestack/runtime.lessstack. We'll hope the compiler gets better
// over time and we get this optimization for free. Until then, we'll have
// to live with slower packet processing.
return p
}
p := &eagerPacket{
packet: packet{data: data},
}
p.layers = p.initialLayers[:0]
p.initialDecode(firstLayerDecoder)
return p
}
// PacketDataSource is an interface for some source of packet data. Users may
// create their own implementations, or use the existing implementations in
// gopacket/pcap (libpcap, allows reading from live interfaces or from
// pcap files) or gopacket/pfring (PF_RING, allows reading from live
// interfaces).
type PacketDataSource interface {
// ReadPacketData returns the next packet available from this data source.
// It returns:
// data: The bytes of an individual packet.
// ci: Metadata about the capture
// err: An error encountered while reading packet data. If err != nil,
// then data/ci will be ignored.
ReadPacketData() (data []byte, ci CaptureInfo, err error)
}
// ZeroCopyPacketDataSource is an interface to pull packet data from sources
// that allow data to be returned without copying to a user-controlled buffer.
// It's very similar to PacketDataSource, except that the caller must be more
// careful in how the returned buffer is handled.
type ZeroCopyPacketDataSource interface {
// ZeroCopyReadPacketData returns the next packet available from this data source.
// It returns:
// data: The bytes of an individual packet. Unlike with
// PacketDataSource's ReadPacketData, the slice returned here points
// to a buffer owned by the data source. In particular, the bytes in
// this buffer may be changed by future calls to
// ZeroCopyReadPacketData. Do not use the returned buffer after
// subsequent ZeroCopyReadPacketData calls.
// ci: Metadata about the capture
// err: An error encountered while reading packet data. If err != nil,
// then data/ci will be ignored.
ZeroCopyReadPacketData() (data []byte, ci CaptureInfo, err error)
}
// PacketSource reads in packets from a PacketDataSource, decodes them, and
// returns them.
//
// There are currently two different methods for reading packets in through
// a PacketSource:
//
// Reading With Packets Function
//
// This method is the most convenient and easiest to code, but lacks
// flexibility. Packets returns a 'chan Packet', then asynchronously writes
// packets into that channel. Packets uses a blocking channel, and closes
// it if an io.EOF is returned by the underlying PacketDataSource. All other
// PacketDataSource errors are ignored and discarded.
// for packet := range packetSource.Packets() {
// ...
// }
//
// Reading With NextPacket Function
//
// This method is the most flexible, and exposes errors that may be
// encountered by the underlying PacketDataSource. It's also the fastest
// in a tight loop, since it doesn't have the overhead of a channel
// read/write. However, it requires the user to handle errors, most
// importantly the io.EOF error in cases where packets are being read from
// a file.
// for {
// packet, err := packetSource.NextPacket() {
// if err == io.EOF {
// break
// } else if err != nil {
// log.Println("Error:", err)
// continue
// }
// handlePacket(packet) // Do something with each packet.
// }
type PacketSource struct {
source PacketDataSource
decoder Decoder
// DecodeOptions is the set of options to use for decoding each piece
// of packet data. This can/should be changed by the user to reflect the
// way packets should be decoded.
DecodeOptions
}
// NewPacketSource creates a packet data source.
func NewPacketSource(source PacketDataSource, decoder Decoder) *PacketSource {
return &PacketSource{
source: source,
decoder: decoder,
}
}
// NextPacket returns the next decoded packet from the PacketSource. On error,
// it returns a nil packet and a non-nil error.
func (p *PacketSource) NextPacket() (Packet, error) {
data, ci, err := p.source.ReadPacketData()
if err != nil {
return nil, err
}
packet := NewPacket(data, p.decoder, p.DecodeOptions)
m := packet.Metadata()
m.CaptureInfo = ci
m.Truncated = m.Truncated || ci.CaptureLength < ci.Length
return packet, nil
}
// packetsToChannel reads in all packets from the packet source and sends them
// to the given channel. When it receives an error, it ignores it. When it
// receives an io.EOF, it closes the channel.
func (p *PacketSource) packetsToChannel(c chan<- Packet) {
for {
packet, err := p.NextPacket()
if err == io.EOF {
close(c)
return
} else if err == nil {
c <- packet
}
}
}
// Packets returns a blocking channel of packets, allowing easy iterating over
// packets. Packets will be asynchronously read in from the underlying
// PacketDataSource and written to the returned channel. If the underlying
// PacketDataSource returns an io.EOF error, the channel will be closed.
// If any other error is encountered, it is ignored.
//
// for packet := range packetSource.Packets() {
// handlePacket(packet) // Do something with each packet.
// }
func (p *PacketSource) Packets() chan Packet {
c := make(chan Packet, 1000)
go p.packetsToChannel(c)
return c
}