Skip to content

sanglee325/fgsm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast Gradient Sign Method (FGSM)

FGSM is one of the most popular Adversarial attack. It is powerful and intuitive.

FGSM Attack on MNIST

MNIST model

  • class MnistModel(nn.Module):
      def __init__(self):
          super(MnistModel, self).__init__()
          self.conv1 = nn.Conv2d(1, 32, kernel_size = 5, padding=2)
          self.conv2 = nn.Conv2d(32, 64, kernel_size = 5, padding=2)
          self.fc1 = nn.Linear(64*7*7, 1024)
          self.fc2 = nn.Linear(1024, 10)
    
      def forward(self, x):
          x = F.max_pool2d(F.relu(self.conv1(x)), 2)
          x = F.max_pool2d(F.relu(self.conv2(x)), 2)
          x = x.view(-1, 64*7*7)
          x = F.relu(self.fc1(x))
          x = F.dropout(x, training=self.training)
          x = self.fc2(x)
          return F.log_softmax(x)

FGSM Attack

  • def fgsm_attack(image, epsilon, data_grad):
      adversary = FGSM(model, loss_fn=nn.NLLLoss(reduction='sum'), 
                      eps=epsilon, clip_min=0., clip_max=1., targeted=False)
      perturbed_image = adversary.perturb(image, label)
      return perturbed_image

Adding FGSM attacked images to training

  • from advertorch.attacks import GradientSignAttack as FGSM
    
    def advtrain(model, device, train_loader, optimizer, epoch, log_interval):
      model.train()
      avg_loss = 0
      # in training loop:
      
      adversary = FGSM(model, loss_fn=nn.NLLLoss(reduction='sum'), 
                      eps=0.3, clip_min=0., clip_max=1., targeted=False)
    
      for batch_idx, (data, target) in enumerate(train_loader):
          data, target = data.to(device), target.to(device)
          data = adversary.perturb(data, target)
          optimizer.zero_grad()
          output = model(data)
          loss = F.nll_loss(output, target)
          loss.backward()
          optimizer.step()
          avg_loss+=F.nll_loss(output, target, reduction='sum').item()
          
          if batch_idx % log_interval == 0:
              print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                  epoch, batch_idx * len(data), len(train_loader.dataset),
                  100. * batch_idx / len(train_loader), loss.item()))
    
      avg_loss/=len(train_loader.dataset)
      return avg_loss

Result

Accuracy & Epsilon

graph

  • FGSM defense:  
    Epsilon: 0	Test Accuracy = 9502 / 10000 = 0.9502  
    Epsilon: 0.05	Test Accuracy = 9342 / 10000 = 0.9342  
    Epsilon: 0.1	Test Accuracy = 9338 / 10000 = 0.9338  
    Epsilon: 0.15	Test Accuracy = 9444 / 10000 = 0.9444  
    Epsilon: 0.2	Test Accuracy = 9522 / 10000 = 0.9522  
    Epsilon: 0.25	Test Accuracy = 9564 / 10000 = 0.9564  
    Epsilon: 0.3	Test Accuracy = 9544 / 10000 = 0.9544  
    

Sample Attacked MNIST examples

graph

Releases

No releases published

Packages

No packages published