forked from pymc-devs/pymc-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
references.bib
434 lines (434 loc) · 16.9 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
@article{ando2007bayesian,
title = {Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models},
author = {Ando, Tomohiro},
journal = {Biometrika},
volume = {94},
number = {2},
pages = {443--458},
year = {2007},
publisher = {Oxford University Press},
doi = {10.1093/biomet/asm017}
}
@article{baio2010bayesian,
title = {Bayesian hierarchical model for the prediction of football results},
author = {Baio, Gianluca and Blangiardo, Marta},
journal = {Journal of Applied Statistics},
volume = {37},
number = {2},
pages = {253--264},
year = {2010},
publisher = {Taylor \& Francis}
}
@article{bauer2005probing,
title = {Probing interactions in fixed and multilevel regression: Inferential and graphical techniques},
author = {Bauer, Daniel J and Curran, Patrick J},
journal = {Multivariate behavioral research},
volume = {40},
number = {3},
pages = {373--400},
year = {2005},
publisher = {Taylor \& Francis}
}
@book{berry1996statistics,
title = {Statistics: a Bayesian perspective},
author = {Berry, Donald A},
year = {1996},
publisher = {Duxbury Press}
}
@book{breen1996regression,
title = {Regression models: Censored, sample selected, or truncated data},
author = {Breen, Richard and others},
volume = {111},
year = {1996},
publisher = {Sage}
}
@misc{carpenter2016hierarchical,
title = {Hierarchical partial pooling for repeated binary trials},
author = {Carpenter, Bob and Gabry, J and Goodrich, B},
year = {2016},
publisher = {Technical report. Retrieved from https://mc-stan. org/users/docum entat ion~\ldots{}}
}
@article{efron1975data,
title = {Data analysis using Stein's estimator and its generalizations},
author = {Efron, Bradley and Morris, Carl},
journal = {Journal of the American Statistical Association},
volume = {70},
number = {350},
pages = {311--319},
year = {1975},
publisher = {Taylor \& Francis}
}
@book{fox2010bayesian,
title = {Bayesian item response modeling: Theory and applications},
author = {Fox, Jean-Paul},
year = {2010},
publisher = {Springer}
}
@book{gelman2006data,
title = {Data analysis using regression and multilevel/hierarchical models},
author = {Gelman, Andrew and Hill, Jennifer},
year = {2006},
publisher = {Cambridge university press}
}
@article{gelman2006multilevel,
title = {Multilevel (hierarchical) modeling: what it can and cannot do},
author = {Gelman, Andrew},
journal = {Technometrics},
volume = {48},
number = {3},
pages = {432--435},
year = {2006},
publisher = {Taylor \& Francis}
}
@article{gelman2008scaling,
title = {Scaling regression inputs by dividing by two standard deviations},
author = {Gelman, Andrew},
journal = {Statistics in medicine},
volume = {27},
number = {15},
pages = {2865--2873},
year = {2008},
publisher = {Wiley Online Library},
doi = {10.1002/sim.3107}
}
@book{gelman2013bayesian,
title = {Bayesian Data Analysis},
publisher = {Chapman and Hall/CRC},
author = {Gelman, Andrew and Carlin, John B. and Stern, Hal S. and Dunson, David B. and Vehtari, Aki and Rubin, Donald B.},
year = {2013}
}
@book{gelman2020regression,
title = {Regression and other stories},
author = {Gelman, Andrew and Hill, Jennifer and Vehtari, Aki},
year = {2020},
publisher = {Cambridge University Press}
}
@article{goldberg2001eigentaste,
author = {Ken Goldberg and Theresa Roeder and Chris Perkins},
title = {Eigentaste: A Constant Time Collaborative Filtering Algorithm},
journal = {Information Retrieval},
year = {2001},
volume = {4},
pages = {133--151}
}
@article{goodman1999,
doi = {10.7326/0003-4819-130-12-199906150-00008},
url = {https://doi.org/10.7326/0003-4819-130-12-199906150-00008},
year = {1999},
month = jun,
publisher = {American College of Physicians},
volume = {130},
number = {12},
pages = {995},
author = {Steven N. Goodman},
title = {Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy},
journal = {Annals of Internal Medicine}
}
@misc{harper2015movielens,
title = {The MovieLens Datasets: History and Context},
author = {Harper, F. Maxwell and Konstan, Joseph A.},
journal = {ACM Transactions on Interactive Intelligent Systems},
volumne = {5},
number = {4},
pages = {1--19},
year = {2016},
month = {January},
url = {https://doi.org/10.1145/2827872}
}
@book{hayes2017introduction,
title = {Introduction to mediation, moderation, and conditional process analysis: A regression-based approach},
author = {Hayes, Andrew F},
year = {2017},
publisher = {Guilford publications}
}
@misc{hogg2010data,
title = {Data analysis recipes: Fitting a model to data},
author = {David W. Hogg and Jo Bovy and Dustin Lang},
year = {2010},
eprint = {1008.4686},
archiveprefix = {arXiv},
primaryclass = {astro-ph.IM}
}
@article{iacobucci2016mean,
title = {Mean centering helps alleviate ``micro'' but not ``macro'' multicollinearity},
author = {Iacobucci, Dawn and Schneider, Matthew J and Popovich, Deidre L and Bakamitsos, Georgios A},
journal = {Behavior research methods},
volume = {48},
number = {4},
pages = {1308--1317},
year = {2016},
publisher = {Springer}
}
@article{iacobucci2017mean,
title = {Mean centering, multicollinearity, and moderators in multiple regression: The reconciliation redux},
author = {Iacobucci, Dawn and Schneider, Matthew J and Popovich, Deidre L and Bakamitsos, Georgios A},
journal = {Behavior research methods},
volume = {49},
number = {1},
pages = {403--404},
year = {2017},
publisher = {Springer}
}
@book{ivezić2014astroMLtext,
author = {\v{Z}eljko Ivezi\'{c} and Andrew J. Connolly and Jacob T. VanderPlas and Alexander Gray},
doi = {10.1515/9781400848911},
title = {Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data},
year = {2014},
publisher = {Princeton University Press},
isbn = {9781400848911}
}
@book{james2021statisticallearning,
title = {An Introduction to Statistical Learning},
author = {James, Gareth ad Witten, Daniela and Hastie, Trevor and Tibshirani, Robert},
year = {2021},
publisher = {Springer},
doi = {https://doi.org/10.1007/978-1-0716-1418-1},
issn = {1431-875X},
isbn = {978-1-0716-1420-4}
}
@article{johnson1999,
doi = {10.2307/3802789},
url = {https://doi.org/10.2307/3802789},
year = {1999},
month = jul,
publisher = {{JSTOR}},
volume = {63},
number = {3},
pages = {763},
author = {Douglas H. Johnson},
title = {The Insignificance of Statistical Significance Testing},
journal = {The Journal of Wildlife Management}
}
@misc{kingma2014autoencoding,
title = {Auto-Encoding Variational Bayes},
author = {Diederik P Kingma and Max Welling},
year = {2014},
eprint = {1312.6114},
archiveprefix = {arXiv},
primaryclass = {stat.ML}
}
@article{koren2009matrixfactorization,
author = {Koren, Yehuda and Bell, Robert and Volinsky, Chris},
journal = {Computer},
title = {Matrix Factorization Techniques for Recommender Systems},
year = {2009},
volume = {42},
number = {8},
pages = {30--37},
doi = {10.1109/MC.2009.263}
}
@article{kruschke2011bayesian,
title = {Bayesian assessment of null values via parameter estimation and model comparison},
author = {Kruschke, John K},
journal = {Perspectives on Psychological Science},
volume = {6},
number = {3},
pages = {299--312},
year = {2011},
publisher = {Sage Publications Sage CA: Los Angeles, CA}
}
@article{kruschke2013,
doi = {10.1037/a0029146},
url = {https://doi.org/10.1037/a0029146},
year = {2013},
publisher = {American Psychological Association ({APA})},
volume = {142},
number = {2},
pages = {573--603},
author = {John K. Kruschke},
title = {Bayesian estimation supersedes the t test.},
journal = {Journal of Experimental Psychology: General}
}
@book{kruschke2014doing,
title = {Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan},
author = {Kruschke, John},
year = {2014},
publisher = {Academic Press}
}
@misc{kucukelbir2015automatic,
title = {Automatic Variational Inference in Stan},
author = {Alp Kucukelbir and Rajesh Ranganath and Andrew Gelman and David M. Blei},
year = {2015},
eprint = {1506.03431},
archiveprefix = {arXiv},
primaryclass = {stat.ML}
}
@article{lewandowski2009generating,
title = {Generating random correlation matrices based on vines and extended onion method},
author = {Lewandowski, Daniel and Kurowicka, Dorota and Joe, Harry},
journal = {Journal of multivariate analysis},
volume = {100},
number = {9},
pages = {1989--2001},
year = {2009},
publisher = {Elsevier}
}
@book{martin2018bayesian,
title = {Bayesian analysis with Python: introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ},
author = {Martin, Osvaldo},
year = {2018},
publisher = {Packt Publishing Ltd}
}
@book{martin2021bayesian,
title = {Bayesian Modeling and Computation in Python},
author = {Martin, Osvaldo A and Kumar, Ravin and Lao, Junpeng},
year = {2021},
publisher = {Chapman and Hall/CRC},
doi = {10.1201/9781003019169}
}
@article{mcclelland2017multicollinearity,
title = {Multicollinearity is a red herring in the search for moderator variables: A guide to interpreting moderated multiple regression models and a critique of Iacobucci, Schneider, Popovich, and Bakamitsos (2016)},
author = {McClelland, Gary H and Irwin, Julie R and Disatnik, David and Sivan, Liron},
journal = {Behavior research methods},
volume = {49},
number = {1},
pages = {394--402},
year = {2017},
publisher = {Springer}
}
@book{mcelreath2018statistical,
title = {Statistical rethinking: A Bayesian course with examples in R and Stan},
author = {McElreath, Richard},
year = {2018},
publisher = {Chapman and Hall/CRC}
}
@inproceedings{mnih2008advances,
title = {Probabilistic Matrix Factorization},
author = {Mnih, Andriy and Salakhutdinov, Russ R},
booktitle = {Advances in Neural Information Processing Systems},
editor = {J. Platt and D. Koller and Y. Singer and S. Roweis},
publisher = {Curran Associates, Inc.},
url = {https://proceedings.neurips.cc/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf},
volume = {20},
year = {2008}
}
@misc{mnih2013playing,
title = {Playing Atari with Deep Reinforcement Learning},
author = {Volodymyr Mnih and Koray Kavukcuoglu and David Silver and Alex Graves and Ioannis Antonoglou and Daan Wierstra and Martin Riedmiller},
year = {2013},
eprint = {1312.5602},
archiveprefix = {arXiv},
primaryclass = {cs.LG}
}
@book{molnar2019,
title = {Interpretable Machine Learning},
author = {Christoph Molnar},
year = {2019},
subtitle = {A Guide for Making Black Box Models Explainable},
url = {https://christophm.github.io/interpretable-ml-book/},
publisher = {Christoph Molnar}
}
@article{nowlan1992simplifying,
title = {Simplifying Neural Networks By Soft Weight-Sharing},
author = {Nowlan, Steven J and Hinton, Geoffrey E},
journal = {Neural computation},
volume = {4},
number = {4},
pages = {473--493},
year = {1992},
publisher = {MIT Press}
}
@article{nuijten2015default,
title = {A default Bayesian hypothesis test for mediation},
author = {Nuijten, Mich{\`e}le B and Wetzels, Ruud and Matzke, Dora and Dolan, Conor V and Wagenmakers, Eric-Jan},
journal = {Behavior research methods},
volume = {47},
number = {1},
pages = {85--97},
year = {2015},
publisher = {Springer}
}
@book{rasmussen2003gaussian,
title = {Gaussian Processes for Machine Learning},
author = {Rasmussen, Carl Edward and Williams, Christopher K. I.},
year = {2006},
isbn = {026218253X},
publisher = {The MIT Press},
url = {https://gaussianprocess.org/gpml/}
}
@book{roback2021beyond,
title = {Beyond multiple linear regression: Applied generalized linear models and multilevel models in R},
author = {Roback, P., and Legler, J.},
year = {2021},
publisher = {CRC Press},
url = {https://bookdown.org/roback/bookdown-BeyondMLR/}
}
@inproceedings{salakhutdinov2008bayesian,
title = {Bayesian Probabilistic Matrix Factorization Using Markov Chain Monte Carlo},
author = {Salakhutdinov, Ruslan and Mnih, Andriy},
booktitle = {Proceedings of the 25th international conference on Machine learning},
pages = {880--887},
year = {2008},
volume = {25}
}
@article{silver2016masteringgo,
title = {Mastering the game of Go with deep neural networks and tree search},
author = {D. Silver, A. Huang, C. Maddison et al.},
journal = {Nature},
volume = {529},
pages = {484--489},
year = {2016},
url = {https://doi.org/10.1038/nature16961}
}
@article{spiller2013spotlights,
title = {Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression},
author = {Spiller, Stephen A and Fitzsimons, Gavan J and Lynch Jr, John G and McClelland, Gary H},
journal = {Journal of marketing research},
volume = {50},
number = {2},
pages = {277--288},
year = {2013},
publisher = {SAGE Publications Sage CA: Los Angeles, CA}
}
@misc{szegedy2014going,
title = {Going Deeper with Convolutions},
author = {Christian Szegedy and Wei Liu and Yangqing Jia and Pierre Sermanet and Scott Reed and Dragomir Anguelov and Dumitru Erhan and Vincent Vanhoucke and Andrew Rabinovich},
year = {2014},
eprint = {1409.4842},
archiveprefix = {arXiv},
primaryclass = {cs.CV}
}
@online{vandenbergSPSS,
author = {van den Berg, R. G},
title = {SPSS Moderation Regression Tutorial},
url = {https://www.spss-tutorials.com/spss-regression-with-moderation-interaction-effect/},
urldate = {2022-03-20}
}
@inproceedings{vanderplas2012astroML,
author = {{Vanderplas}, J.T. and {Connolly}, A.J. and {Ivezi{\'c}}, {\v Z}. and {Gray}, A.},
booktitle = {Conference on Intelligent Data Understanding (CIDU)},
title = {Introduction to astroML: Machine learning for astrophysics},
month = {oct.},
pages = {47--54},
doi = {10.1109/CIDU.2012.6382200},
year = {2012}
}
@book{wilkinson2005grammar,
title = {The Grammar of Graphics},
author = {Wilkinson, Leland},
year = {2005},
publisher = {Springer},
doi = {https://doi.org/10.1007/0-387-28695-0},
issn = {1431-8784},
isbn = {978-0-387-24544-7}
}
@article{yuan2009bayesian,
title = {Bayesian mediation analysis.},
author = {Yuan, Ying and MacKinnon, David P},
journal = {Psychological methods},
volume = {14},
number = {4},
pages = {301},
year = {2009},
publisher = {American Psychological Association}
}
@article{zhang2017moderation,
title = {Moderation analysis with missing data in the predictors.},
author = {Zhang, Qian and Wang, Lijuan},
journal = {Psychological methods},
volume = {22},
number = {4},
pages = {649},
year = {2017},
publisher = {American Psychological Association}
}