-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmain_experiment.py
278 lines (213 loc) · 11.6 KB
/
main_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# !/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import argparse
import time
import torch
import torch.utils.data
import torch.optim as optim
import numpy as np
import math
import random
import os
import datetime
import models.VAE as VAE
from optimization.training import train, evaluate
from utils.load_data import load_dataset
from utils.plotting import plot_training_curve
parser = argparse.ArgumentParser(description='PyTorch Sylvester Normalizing flows')
parser.add_argument('-d', '--dataset', type=str, default='mnist', choices=['mnist', 'freyfaces', 'omniglot', 'caltech'],
metavar='DATASET',
help='Dataset choice.')
parser.add_argument('-freys', '--freyseed', type=int, default=123,
metavar='FREYSEED',
help="""Seed for shuffling frey face dataset for test split. Ignored for other datasets.
Results in paper are produced with seeds 123, 321, 231""")
parser.add_argument('-nc', '--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--manual_seed', type=int, help='manual seed, if not given resorts to random seed.')
parser.add_argument('-li', '--log_interval', type=int, default=10, metavar='LOG_INTERVAL',
help='how many batches to wait before logging training status')
parser.add_argument('-od', '--out_dir', type=str, default='snapshots', metavar='OUT_DIR',
help='output directory for model snapshots etc.')
fp = parser.add_mutually_exclusive_group(required=False)
fp.add_argument('-te', '--testing', action='store_true', dest='testing',
help='evaluate on test set after training')
fp.add_argument('-va', '--validation', action='store_false', dest='testing',
help='only evaluate on validation set')
parser.set_defaults(testing=True)
# optimization settings
parser.add_argument('-e', '--epochs', type=int, default=2000, metavar='EPOCHS',
help='number of epochs to train (default: 2000)')
parser.add_argument('-es', '--early_stopping_epochs', type=int, default=100, metavar='EARLY_STOPPING',
help='number of early stopping epochs')
parser.add_argument('-bs', '--batch_size', type=int, default=100, metavar='BATCH_SIZE',
help='input batch size for training (default: 100)')
parser.add_argument('-lr', '--learning_rate', type=float, default=0.0005, metavar='LEARNING_RATE',
help='learning rate')
parser.add_argument('-w', '--warmup', type=int, default=100, metavar='N',
help='number of epochs for warm-up. Set to 0 to turn warmup off.')
parser.add_argument('--max_beta', type=float, default=1., metavar='MB',
help='max beta for warm-up')
parser.add_argument('--min_beta', type=float, default=0.0, metavar='MB',
help='min beta for warm-up')
parser.add_argument('-f', '--flow', type=str, default='no_flow', choices=['planar', 'iaf', 'householder', 'orthogonal',
'triangular', 'no_flow'],
help="""Type of flows to use, no flows can also be selected""")
parser.add_argument('-nf', '--num_flows', type=int, default=4,
metavar='NUM_FLOWS', help='Number of flow layers, ignored in absence of flows')
parser.add_argument('-nv', '--num_ortho_vecs', type=int, default=8, metavar='NUM_ORTHO_VECS',
help=""" For orthogonal flow: How orthogonal vectors per flow do you need.
Ignored for other flow types.""")
parser.add_argument('-nh', '--num_householder', type=int, default=8, metavar='NUM_HOUSEHOLDERS',
help=""" For Householder Sylvester flow: Number of Householder matrices per flow.
Ignored for other flow types.""")
parser.add_argument('-mhs', '--made_h_size', type=int, default=320,
metavar='MADEHSIZE', help='Width of mades for iaf. Ignored for all other flows.')
parser.add_argument('--z_size', type=int, default=64, metavar='ZSIZE',
help='how many stochastic hidden units')
# gpu/cpu
parser.add_argument('--gpu_num', type=int, default=0, metavar='GPU', help='choose GPU to run on.')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.manual_seed is None:
args.manual_seed = random.randint(1, 100000)
random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
np.random.seed(args.manual_seed)
if args.cuda:
# gpu device number
torch.cuda.set_device(args.gpu_num)
kwargs = {'num_workers': 0, 'pin_memory': True} if args.cuda else {}
def run(args, kwargs):
print('\nMODEL SETTINGS: \n', args, '\n')
print("Random Seed: ", args.manual_seed)
# ==================================================================================================================
# SNAPSHOTS
# ==================================================================================================================
args.model_signature = str(datetime.datetime.now())[0:19].replace(' ', '_')
args.model_signature = args.model_signature.replace(':', '_')
snapshots_path = os.path.join(args.out_dir, 'vae_' + args.dataset + '_')
snap_dir = snapshots_path + args.flow + '_gpunum_' + str(args.gpu_num)
if args.flow != 'no_flow':
snap_dir += '_' + 'num_flows_' + str(args.num_flows)
if args.flow == 'orthogonal':
snap_dir = snap_dir + '_num_vectors_' + str(args.num_ortho_vecs)
elif args.flow == 'householder':
snap_dir = snap_dir + '_num_householder_' + str(args.num_householder)
elif args.flow == 'iaf':
snap_dir = snap_dir + '_madehsize_' + str(args.made_h_size)
snap_dir = snap_dir + '__' + args.model_signature + '/'
args.snap_dir = snap_dir
if not os.path.exists(snap_dir):
os.makedirs(snap_dir)
# SAVING
torch.save(args, snap_dir + args.flow + '.config')
# ==================================================================================================================
# LOAD DATA
# ==================================================================================================================
train_loader, val_loader, test_loader, args = load_dataset(args, **kwargs)
# ==================================================================================================================
# SELECT MODEL
# ==================================================================================================================
# flow parameters and architecture choice are passed on to model through args
if args.flow == 'no_flow':
model = VAE.VAE(args)
elif args.flow == 'planar':
model = VAE.PlanarVAE(args)
elif args.flow == 'iaf':
model = VAE.IAFVAE(args)
elif args.flow == 'orthogonal':
model = VAE.OrthogonalSylvesterVAE(args)
elif args.flow == 'householder':
model = VAE.HouseholderSylvesterVAE(args)
elif args.flow == 'triangular':
model = VAE.TriangularSylvesterVAE(args)
else:
raise ValueError('Invalid flow choice')
if args.cuda:
print("Model on GPU")
model.cuda()
print(model)
optimizer = optim.Adamax(model.parameters(), lr=args.learning_rate, eps=1.e-7)
# ==================================================================================================================
# TRAINING
# ==================================================================================================================
train_loss = []
val_loss = []
# for early stopping
best_loss = np.inf
best_bpd = np.inf
e = 0
epoch = 0
train_times = []
for epoch in range(1, args.epochs + 1):
t_start = time.time()
tr_loss = train(epoch, train_loader, model, optimizer, args)
train_loss.append(tr_loss)
train_times.append(time.time()-t_start)
print('One training epoch took %.2f seconds' % (time.time()-t_start))
v_loss, v_bpd = evaluate(val_loader, model, args, epoch=epoch)
val_loss.append(v_loss)
# early-stopping
if v_loss < best_loss:
e = 0
best_loss = v_loss
if args.input_type != 'binary':
best_bpd = v_bpd
print('->model saved<-')
torch.save(model, snap_dir + args.flow + '.model')
# torch.save(model, snap_dir + args.flow + '_' + args.architecture + '.model')
elif (args.early_stopping_epochs > 0) and (epoch >= args.warmup):
e += 1
if e > args.early_stopping_epochs:
break
if args.input_type == 'binary':
print('--> Early stopping: {}/{} (BEST: loss {:.4f})\n'.format(e, args.early_stopping_epochs, best_loss))
else:
print('--> Early stopping: {}/{} (BEST: loss {:.4f}, bpd {:.4f})\n'.format(e, args.early_stopping_epochs,
best_loss, best_bpd))
if math.isnan(v_loss):
raise ValueError('NaN encountered!')
train_loss = np.hstack(train_loss)
val_loss = np.array(val_loss)
plot_training_curve(train_loss, val_loss, fname=snap_dir + '/training_curve_%s.pdf' % args.flow)
# training time per epoch
train_times = np.array(train_times)
mean_train_time = np.mean(train_times)
std_train_time = np.std(train_times, ddof=1)
print('Average train time per epoch: %.2f +/- %.2f' % (mean_train_time, std_train_time))
# ==================================================================================================================
# EVALUATION
# ==================================================================================================================
test_score_file = snap_dir + 'test_scores.txt'
with open('experiment_log.txt', 'a') as ff:
print(args, file=ff)
print('Stopped after %d epochs' % epoch, file=ff)
print('Average train time per epoch: %.2f +/- %.2f' % (mean_train_time, std_train_time), file=ff)
final_model = torch.load(snap_dir + args.flow + '.model')
if args.testing:
validation_loss, validation_bpd = evaluate(val_loader, final_model, args)
test_loss, test_bpd = evaluate(test_loader, final_model, args, testing=True)
with open('experiment_log.txt', 'a') as ff:
print('FINAL EVALUATION ON VALIDATION SET\n'
'ELBO (VAL): {:.4f}\n'.format(validation_loss), file=ff)
print('FINAL EVALUATION ON TEST SET\n'
'NLL (TEST): {:.4f}\n'.format(test_loss), file=ff)
if args.input_type != 'binary':
print('FINAL EVALUATION ON VALIDATION SET\n'
'ELBO (VAL) BPD : {:.4f}\n'.format(validation_bpd), file=ff)
print('FINAL EVALUATION ON TEST SET\n'
'NLL (TEST) BPD: {:.4f}\n'.format(test_bpd), file=ff)
else:
validation_loss, validation_bpd = evaluate(val_loader, final_model, args)
# save the test score in case you want to look it up later.
_, _ = evaluate(test_loader, final_model, args, testing=True, file=test_score_file)
with open('experiment_log.txt', 'a') as ff:
print('FINAL EVALUATION ON VALIDATION SET\n'
'ELBO (VALIDATION): {:.4f}\n'.format(validation_loss), file=ff)
if args.input_type != 'binary':
print('FINAL EVALUATION ON VALIDATION SET\n'
'ELBO (VAL) BPD : {:.4f}\n'.format(validation_bpd), file=ff)
if __name__ == "__main__":
run(args, kwargs)