-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModels.py
228 lines (217 loc) · 9.16 KB
/
Models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn as nn
import torch.nn.functional as F
# FedAnil+: K-Medoids
from sklearn_extra.cluster import KMedoids
# FedAnil+: Silhouette Index
from sklearn.metrics import silhouette_score
import numpy as np
# Define ResNet50 model
#resnet50 = torch.hub.load('pytorch/vision:v0.9.0', 'resnet50', pretrained=True)
# Define the ResNet50 architecture using nn.Sequential
resnet50 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Linear(7*7*64, 512),
nn.Linear(512, 10),)
# Define GloVe model
glove = nn.Sequential(
nn.Linear(100, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 16),
nn.ReLU(),
)
# Define CNN model
cnn = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Flatten(),
nn.Linear(3136, 512),
nn.Linear(512, 10),
nn.ReLU(),
)
# Define concatenated model
class ConcatModel(nn.Module):
def __init__(self):
super().__init__()
self.resnet50 = resnet50
self.glove = glove
self.cnn = cnn
self.fc3 = nn.Linear(1000 + 16 + 128, 256) # Concatenated output size is 1000+16+128 = 1144
self.fc4 = nn.Linear(256, 10) # Output size is 10 for classification
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(7*7*64, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, inputs):
tensor = inputs.view(-1, 1, 28, 28)
resnet_outetput = tensor = F.relu(self.conv1(tensor))
tensor = self.pool1(tensor)
glove_output = tensor = F.relu(self.conv2(tensor))
tensor = self.pool2(tensor)
tensor = tensor.view(-1, 7*7*64)
cnn_output = tensor = F.relu(self.fc1(tensor))
tensor = self.fc2(tensor)
#concat = torch.cat((resnet_outetput, glove_output, cnn_output), dim=1)
#x = F.relu(self.fc1(concat))
return tensor
# FedAnil+: Sparsification
def first_filter(self, global_parameters):
selected_parameters = {}
for var in self.state_dict():
shape_of_original_gradients = self.state_dict()[var].shape
reshape_of_local_gradients = self.state_dict()[var].view(-1)
reshape_of_global_gradients = global_parameters[var].view(-1)
combine_gradients = reshape_of_global_gradients
index = 0
for item1, item2 in zip(reshape_of_local_gradients, reshape_of_global_gradients):
if item1 > item2:
combine_gradients[index] = item1
else:
combine_gradients[index] = 0
index += 1
selected_parameters[var] = combine_gradients.reshape(shape_of_original_gradients)
return selected_parameters
# FedAnil+: K-Medoids
def kmedoids_update(self, max_k = 10):
# FedAnil+: Silhouette Index
max_silhouette_scores = 0
best_k = 2
best_kmedoids_data = {}
for k in range(2, max_k + 1):
kmedoids_clusters_and_labels = dict()
# FedAnil+: Silhouette Index
sum_silhouette_scores = 0
vars_count = 0
for var in self.state_dict():
shape_of_datas = self.state_dict()[var].shape
datas = self.state_dict()[var].reshape(shape_of_datas[0], -1)
k = min(k, shape_of_datas[0] - 1)
datakm = KMedoids(n_clusters=k, random_state=0).fit(datas)
kmedoids_clusters_and_labels[var] = datakm
if (np.unique(datakm.labels_).size > 1):
sum_silhouette_scores += silhouette_score(datas, datakm.labels_)
vars_count += 1
avg_silhouette_score = sum_silhouette_scores / vars_count
if avg_silhouette_score > max_silhouette_scores:
max_silhouette_scores = avg_silhouette_score
best_k = k
best_kmedoids_data = kmedoids_clusters_and_labels
return best_kmedoids_data
class CombinedModel(nn.Module):
def __init__(self, glove_model = glove, resnet_model = resnet50, cnn_model = cnn):
super().__init__()
self.glove_model = glove_model
self.resnet_model = resnet_model
self.cnn_model = cnn_model
def forward(self, x, model_choice = "cnn"):
#print(f"X input size {x.size()}")
x = x.view(-1, 1, 28, 28)
#print(f"X view input size {x.size()}")
if model_choice == "glove":
x = self.glove_model(x)
elif model_choice == "resnet":
x = self.resnet_model(x)
elif model_choice == "cnn":
for layer in self.cnn_model:
x = layer(x)
#print(f"layers {x.size()}")
else:
raise ValueError("Invalid model choice.")
return x
# FedAnil+: Sparsification
def first_filter(self, global_parameters):
selected_parameters = {}
for var in self.state_dict():
shape_of_original_gradients = self.state_dict()[var].shape
reshape_of_local_gradients = self.state_dict()[var].view(-1)
reshape_of_global_gradients = global_parameters[var].view(-1)
combine_gradients = reshape_of_global_gradients
index = 0
for item1, item2 in zip(reshape_of_local_gradients, reshape_of_global_gradients):
if item1 > item2:
combine_gradients[index] = item1
else:
combine_gradients[index] = 0
index += 1
selected_parameters[var] = combine_gradients.reshape(shape_of_original_gradients)
return selected_parameters
# FedAnil+: K-Medoids
def kmedoids_update(self, max_k = 10):
# FedAnil+: Silhouette Index
max_silhouette_scores = 0
best_k = 2
best_kmedoids_data = {}
for k in range(2, max_k + 1):
kmedoids_clusters_and_labels = dict()
# FedAnil+: Silhouette Index
sum_silhouette_scores = 0
vars_count = 0
for var in self.state_dict():
shape_of_datas = self.state_dict()[var].shape
datas = self.state_dict()[var].reshape(shape_of_datas[0], -1)
k = min(k, shape_of_datas[0] - 1)
datakm = KMedoids(n_clusters=k, random_state=0).fit(datas)
kmedoids_clusters_and_labels[var] = datakm
if (np.unique(datakm.labels_).size > 1):
sum_silhouette_scores += silhouette_score(datas, datakm.labels_)
vars_count += 1
avg_silhouette_score = sum_silhouette_scores / vars_count
if avg_silhouette_score > max_silhouette_scores:
max_silhouette_scores = avg_silhouette_score
best_k = k
best_kmedoids_data = kmedoids_clusters_and_labels
return best_kmedoids_data
class Generator(nn.Module):
def __init__(self, model='cnn'):
super().__init__()
mm = None
if model == 'resnet':
self.fc = nn.Linear(10, 512)
self.fc2 = nn.Linear(512, 7764)
mm = nn.Sequential(
nn.ConvTranspose2d(64, 32, kernel_size=5, stride=2, padding=2, output_padding=1),
nn.ConvTranspose2d(32, 1, kernel_size=5, stride=2, padding=2, output_padding=1),
nn.Sigmoid()
)
elif model == 'glove':
mm = nn.Sequential(
nn.Linear(2, 32),
nn.ReLU(),
nn.Linear(32, 128),
nn.ReLU(),
nn.Linear(128, 784),
)
elif model == 'cnn':
mm = nn.Sequential(
nn.Linear(2, 16),
nn.ReLU(),
nn.Linear(16, 32),
nn.ReLU(),
nn.Linear(32, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, 784),
)
self.model = mm
def forward(self, x, model_type = "cnn"):
output = None
if model_type == "resnet":
x = self.fc(x)
x = self.fc2(x)
x = x.view(-1, 64, 7, 7) # Reshape into feature maps
output = self.model(x)
else:
output = self.model(x)
return output