forked from iscyy/yoloair
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
205 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | ||
|
||
# Parameters | ||
nc: 80 # number of classes | ||
depth_multiple: 0.33 # model depth multiple | ||
width_multiple: 0.50 # layer channel multiple | ||
anchors: | ||
- [10,13, 16,30, 33,23] # P3/8 | ||
- [30,61, 62,45, 59,119] # P4/16 | ||
- [116,90, 156,198, 373,326] # P5/32 | ||
|
||
# YOLOv5 v6.0 backbone | ||
backbone: | ||
# [from, number, module, args] | ||
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 | ||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | ||
[-1, 3, C3, [128]], | ||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | ||
[-1, 6, C3, [256]], | ||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | ||
[-1, 9, C3, [512]], | ||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | ||
[-1, 3, C3, [1024]], | ||
[-1, 1, SPPF, [1024, 5]], # 9 | ||
] | ||
|
||
# YOLOv5 v6.0 head | ||
head: | ||
[[-1, 1, Conv, [512, 1, 1]], | ||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | ||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | ||
[-1, 3, C3, [512, False]], # 13 | ||
|
||
[-1, 1, Conv, [256, 1, 1]], | ||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | ||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | ||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | ||
|
||
[-1, 1, Conv, [256, 3, 2]], | ||
[[-1, 14], 1, Concat, [1]], # cat head P4 | ||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | ||
|
||
[-1, 1, Conv, [512, 3, 2]], | ||
[[-1, 10], 1, Concat, [1]], # cat head P5 | ||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | ||
[-1, 1, SOCA, [512]], | ||
|
||
[[17, 20, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from torch.nn import init | ||
|
||
from torch.autograd import Function | ||
|
||
class Covpool(Function): | ||
@staticmethod | ||
def forward(ctx, input): | ||
x = input | ||
batchSize = x.data.shape[0] | ||
dim = x.data.shape[1] | ||
h = x.data.shape[2] | ||
w = x.data.shape[3] | ||
M = h*w | ||
x = x.reshape(batchSize,dim,M) | ||
I_hat = (-1./M/M)*torch.ones(M,M,device = x.device) + (1./M)*torch.eye(M,M,device = x.device) | ||
I_hat = I_hat.view(1,M,M).repeat(batchSize,1,1).type(x.dtype) | ||
y = x.bmm(I_hat).bmm(x.transpose(1,2)) | ||
ctx.save_for_backward(input,I_hat) | ||
return y | ||
@staticmethod | ||
def backward(ctx, grad_output): | ||
input,I_hat = ctx.saved_tensors | ||
x = input | ||
batchSize = x.data.shape[0] | ||
dim = x.data.shape[1] | ||
h = x.data.shape[2] | ||
w = x.data.shape[3] | ||
M = h*w | ||
x = x.reshape(batchSize,dim,M) | ||
grad_input = grad_output + grad_output.transpose(1,2) | ||
grad_input = grad_input.bmm(x).bmm(I_hat) | ||
grad_input = grad_input.reshape(batchSize,dim,h,w) | ||
return grad_input | ||
|
||
class Sqrtm(Function): | ||
@staticmethod | ||
def forward(ctx, input, iterN): | ||
x = input | ||
batchSize = x.data.shape[0] | ||
dim = x.data.shape[1] | ||
dtype = x.dtype | ||
I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype) | ||
normA = (1.0/3.0)*x.mul(I3).sum(dim=1).sum(dim=1) | ||
A = x.div(normA.view(batchSize,1,1).expand_as(x)) | ||
Y = torch.zeros(batchSize, iterN, dim, dim, requires_grad = False, device = x.device) | ||
Z = torch.eye(dim,dim,device = x.device).view(1,dim,dim).repeat(batchSize,iterN,1,1) | ||
if iterN < 2: | ||
ZY = 0.5*(I3 - A) | ||
Y[:,0,:,:] = A.bmm(ZY) | ||
else: | ||
ZY = 0.5*(I3 - A) | ||
Y[:,0,:,:] = A.bmm(ZY) | ||
Z[:,0,:,:] = ZY | ||
for i in range(1, iterN-1): | ||
ZY = 0.5*(I3 - Z[:,i-1,:,:].bmm(Y[:,i-1,:,:])) | ||
Y[:,i,:,:] = Y[:,i-1,:,:].bmm(ZY) | ||
Z[:,i,:,:] = ZY.bmm(Z[:,i-1,:,:]) | ||
ZY = 0.5*Y[:,iterN-2,:,:].bmm(I3 - Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:])) | ||
y = ZY*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x) | ||
ctx.save_for_backward(input, A, ZY, normA, Y, Z) | ||
ctx.iterN = iterN | ||
return y | ||
@staticmethod | ||
def backward(ctx, grad_output): | ||
input, A, ZY, normA, Y, Z = ctx.saved_tensors | ||
iterN = ctx.iterN | ||
x = input | ||
batchSize = x.data.shape[0] | ||
dim = x.data.shape[1] | ||
dtype = x.dtype | ||
der_postCom = grad_output*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x) | ||
der_postComAux = (grad_output*ZY).sum(dim=1).sum(dim=1).div(2*torch.sqrt(normA)) | ||
I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype) | ||
if iterN < 2: | ||
der_NSiter = 0.5*(der_postCom.bmm(I3 - A) - A.bmm(der_sacleTrace)) | ||
else: | ||
dldY = 0.5*(der_postCom.bmm(I3 - Y[:,iterN-2,:,:].bmm(Z[:,iterN-2,:,:])) - | ||
Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]).bmm(der_postCom)) | ||
dldZ = -0.5*Y[:,iterN-2,:,:].bmm(der_postCom).bmm(Y[:,iterN-2,:,:]) | ||
for i in range(iterN-3, -1, -1): | ||
YZ = I3 - Y[:,i,:,:].bmm(Z[:,i,:,:]) | ||
ZY = Z[:,i,:,:].bmm(Y[:,i,:,:]) | ||
dldY_ = 0.5*(dldY.bmm(YZ) - | ||
Z[:,i,:,:].bmm(dldZ).bmm(Z[:,i,:,:]) - | ||
ZY.bmm(dldY)) | ||
dldZ_ = 0.5*(YZ.bmm(dldZ) - | ||
Y[:,i,:,:].bmm(dldY).bmm(Y[:,i,:,:]) - | ||
dldZ.bmm(ZY)) | ||
dldY = dldY_ | ||
dldZ = dldZ_ | ||
der_NSiter = 0.5*(dldY.bmm(I3 - A) - dldZ - A.bmm(dldY)) | ||
grad_input = der_NSiter.div(normA.view(batchSize,1,1).expand_as(x)) | ||
grad_aux = der_NSiter.mul(x).sum(dim=1).sum(dim=1) | ||
for i in range(batchSize): | ||
grad_input[i,:,:] += (der_postComAux[i] \ | ||
- grad_aux[i] / (normA[i] * normA[i])) \ | ||
*torch.ones(dim,device = x.device).diag() | ||
return grad_input, None | ||
|
||
def CovpoolLayer(var): | ||
return Covpool.apply(var) | ||
|
||
def SqrtmLayer(var, iterN): | ||
return Sqrtm.apply(var, iterN) | ||
|
||
class SOCA(nn.Module): | ||
# second-order Channel attention | ||
def __init__(self, channel, reduction=8): | ||
super(SOCA, self).__init__() | ||
self.max_pool = nn.MaxPool2d(kernel_size=2) | ||
|
||
self.conv_du = nn.Sequential( | ||
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True), | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True), | ||
nn.Sigmoid() | ||
) | ||
|
||
def forward(self, x): | ||
batch_size, C, h, w = x.shape # x: NxCxHxW | ||
N = int(h * w) | ||
min_h = min(h, w) | ||
h1 = 1000 | ||
w1 = 1000 | ||
if h < h1 and w < w1: | ||
x_sub = x | ||
elif h < h1 and w > w1: | ||
W = (w - w1) // 2 | ||
x_sub = x[:, :, :, W:(W + w1)] | ||
elif w < w1 and h > h1: | ||
H = (h - h1) // 2 | ||
x_sub = x[:, :, H:H + h1, :] | ||
else: | ||
H = (h - h1) // 2 | ||
W = (w - w1) // 2 | ||
x_sub = x[:, :, H:(H + h1), W:(W + w1)] | ||
cov_mat = CovpoolLayer(x_sub) # Global Covariance pooling layer | ||
cov_mat_sqrt = SqrtmLayer(cov_mat,5) # Matrix square root layer( including pre-norm,Newton-Schulz iter. and post-com. with 5 iteration) | ||
cov_mat_sum = torch.mean(cov_mat_sqrt,1) | ||
cov_mat_sum = cov_mat_sum.view(batch_size,C,1,1) | ||
y_cov = self.conv_du(cov_mat_sum) | ||
return y_cov*x | ||
|
||
if __name__ == '__main__': | ||
# https://github.com/daitao/SAN | ||
input=torch.randn(50,512,7,7) | ||
kernel_size=input.shape[2] | ||
cbam = SOCA(channel=512) | ||
output=cbam(input) | ||
print(output.shape) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters