-
Notifications
You must be signed in to change notification settings - Fork 126
/
make_art.py
805 lines (674 loc) · 31.9 KB
/
make_art.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
# Copyright 2021 - 2022, Bill Kennedy (https://github.com/rbbrdckybk/ai-art-generator)
# SPDX-License-Identifier: MIT
import threading
import time
import datetime
import shlex
import subprocess
import sys
import unicodedata
import re
import random
import os
from os.path import exists
from datetime import datetime as dt
from datetime import date
from pathlib import Path
from collections import deque
from PIL.PngImagePlugin import PngImageFile, PngInfo
from torch.cuda import get_device_name
# for stable diffusion
cwd = os.getcwd()
if sys.platform == "win32" or os.name == 'nt':
import keyboard
os.environ['PYTHONPATH'] = os.pathsep + (cwd + "\latent-diffusion") + os.pathsep + (cwd + "\\taming-transformers") + os.pathsep + (cwd + "\CLIP")
else:
os.environ['PYTHONPATH'] = os.pathsep + (cwd + "/latent-diffusion") + os.pathsep + (cwd + "/taming-transformers") + os.pathsep + (cwd + "/CLIP")
# these can be overriden with prompt file directives, no need to change them here
CUDA_DEVICE = 0 # cuda device to use, default is 0
PROCESS = "vqgan" # which AI process to use, default is vqgan
WIDTH = 512 # output image width, default is 512
HEIGHT = 512 # output image height, default is 512
ITERATIONS = 500 # number of times to run, default is 500 (VQGAN/DIFFUSION ONLY)
SEED = -1 # initialize with a specific seed value instead of random?
CUTS = 32 # default = 32 (VQGAN/DIFFUSION ONLY)
INPUT_IMAGE = "" # path and filename of starting/input image, eg: samples/vectors/face_07.png
SKIP_STEPS = -1 # steps to skip when using init image (DIFFUSION ONLY)
LEARNING_RATE = 0.1 # default = 0.1 (VQGAN ONLY)
TRANSFORMER = "" # needs to be a .yaml and .ckpt file in /checkpoints directory for whatever is specified here, default = vqgan_imagenet_f16_16384 (VQGAN ONLY)
CLIP_MODEL = "" # default = ViT-B/32 (VQGAN ONLY)
OPTIMISER = "" # default = Adam (VQGAN ONLY)
D_USE_VITB32 = "yes" # load VitB32 CLIP model? (DIFFUSION ONLY)
D_USE_VITB16 = "yes" # load VitB16 CLIP model? (DIFFUSION ONLY)
D_USE_VITL14 = "no" # load VitL14 CLIP model? (DIFFUSION ONLY)
D_USE_RN101 = "no" # load RN101 CLIP model? (DIFFUSION ONLY)
D_USE_RN50 = "yes" # load RN50 CLIP model? (DIFFUSION ONLY)
D_USE_RN50x4 = "no" # load RN50x4 CLIP model? (DIFFUSION ONLY)
D_USE_RN50x16 = "no" # load RN50x16 CLIP model? (DIFFUSION ONLY)
D_USE_RN50x64 = "no" # load RN50x64 CLIP model? (DIFFUSION ONLY)
STEPS = 50 # number of steps (STABLE DIFFUSION ONLY)
SCALE = 7.5 # guidance scale (STABLE DIFFUSION ONLY)
SAMPLES = 1 # number of samples to generate (STABLE DIFFUSION ONLY)
BATCH_SIZE = 1 # number of images to generate per sample (STABLE DIFFUSION ONLY)
STRENGTH = 0.75 # strength of starting image influence (STABLE DIFFUSION ONLY)
SD_LOW_MEMORY = "no" # use the memory-optimized SD fork? (yes/no) (STABLE DIFFUSION ONLY)
SD_LOW_MEM_TURBO = "no" # faster at the cost of ~1GB VRAM (only when SD_LOW_MEMORY = "yes")
USE_UPSCALE = "no" # upscale output images via ESRGAN/GFPGAN? (STABLE DIFFUSION ONLY)
UPSCALE_AMOUNT = 2.0 # amount to upscale, default is 2.0x (STABLE DIFFUSION ONLY)
UPSCALE_FACE_ENH = "no" # use GFPGAN, optimized for faces (STABLE DIFFUSION ONLY)
UPSCALE_KEEP_ORG = "no" # save the original non-upscaled image when using upscaling?
REPEAT = "no" # when finished with all prompts, start back at beginning? (yes/no)
# Prevent threads from printing at same time.
print_lock = threading.Lock()
gpu_name = get_device_name()
# worker thread executes specified shell command
class Worker(threading.Thread):
def __init__(self, command, do_upscale, upscl_amt, upscl_face, upscl_keep, callback=lambda: None):
threading.Thread.__init__(self)
self.command = command
self.callback = callback
self.use_upscale = do_upscale
self.upscale_amount = upscl_amt
self.upscale_face_enh = upscl_face
self.upscale_keep_org = upscl_keep
def run(self):
# doing it this way in case the date has changed since the
# work queue was created, vs having tons of files in a single dir
self.command = self.command.replace("[[date]]", str(date.today()))
sd = False
# create output folder if it doesn't exist
if " -o " in self.command:
# this is vqgan/diffusion
fullfilepath = self.command.split(" -o ",1)[1]
filepath = fullfilepath.replace(fullfilepath[fullfilepath.rindex('/'):], "")
Path(filepath).mkdir(parents=True, exist_ok=True)
# check to see if output file already exists; find unique name if it does
x = 1
basefilepath = fullfilepath
while exists(fullfilepath.replace('.png', '.jpg')):
x += 1
fullfilepath = basefilepath.replace(".png","") + '-' + str(x) + ".png"
self.command = self.command.split(" -o ",1)[0] + " -o " + fullfilepath
else:
# this is stable diffusion
sd = True
# fullfilepath in the case of SD will simply be the output path since
# SD doesn't support specifying input files
fullfilepath = self.command.split(" --outdir ",1)[1]
fullfilepath = fullfilepath.replace("../","")
do_upscale = False
face_enh = False
upscale_keep_orig = False
if self.use_upscale.lower() == "yes":
do_upscale = True
if self.upscale_face_enh.lower() == "yes":
face_enh = True
if self.upscale_keep_org.lower() == "yes":
upscale_keep_orig = True
with print_lock:
print("Command: " + self.command)
start_time = time.time()
# invoke specified AI art process
if not sd:
subprocess.call(shlex.split(self.command))
else:
if sys.platform == "win32" or os.name == 'nt':
subprocess.call(shlex.split(self.command), cwd=(cwd + '\stable-diffusion'))
else:
subprocess.call(shlex.split(self.command), cwd=(cwd + '/stable-diffusion'))
gpu_id = '0'
if '--device' in self.command:
temp = self.command.split('--device', 1)[1]
temp = temp.split(' --', 1)[0]
gpu_id = temp.strip()
samples_dir = fullfilepath + "/gpu_" + gpu_id
if do_upscale:
new_files = os.listdir(samples_dir)
if len(new_files) > 0:
upscale(self.upscale_amount, samples_dir, gpu_id, face_enh)
# remove originals if upscaled version present
new_files = os.listdir(samples_dir)
for f in new_files:
if (".png" in f):
basef = f.replace(".png", "")
if basef[-2:] == "_u":
# this is an upscaled image, delete the original
# or save it in /original if desired
if exists(os.path.join(samples_dir, basef[:-2] + ".png")):
if upscale_keep_orig:
# move the original to /original
orig_dir = os.path.join(fullfilepath + "original")
Path(orig_dir).mkdir(parents=True, exist_ok=True)
os.replace(os.path.join(samples_dir, basef[:-2] + ".png"), \
os.path.join(orig_dir, basef[:-2] + ".png"))
else:
os.remove(os.path.join(samples_dir, basef[:-2] + ".png"))
# find the new image(s) that SD created: re-name, process, and move them
new_files = os.listdir(samples_dir)
nf_count = 0
exec_time = time.time() - start_time
for f in new_files:
if (".png" in f):
# todo: this is mostly a lazy copy from below and should be made into a function
# save just the essential prompt params to metadata
meta_prompt = self.command.split(" --prompt ",1)[1]
meta_prompt = meta_prompt.split(" --outdir ",1)[0]
if 'seed_' in f:
# grab seed from filename
actual_seed = f.replace('seed_', '')
actual_seed = actual_seed.split('_',1)[0]
# replace the seed in the command with the actual seed used
pleft = meta_prompt.split(" --seed ",1)[0]
pright = meta_prompt.split(" --seed ",1)[1].strip()
meta_prompt = pleft + " --seed " + actual_seed
upscale_text = ""
if do_upscale:
upscale_text = " (upscaled "
upscale_text += str(self.upscale_amount) + "x via "
if face_enh:
upscale_text += "GFPGAN)"
else:
upscale_text += "ESRGAN)"
pngImage = PngImageFile(samples_dir + '/' + f)
im = pngImage.convert('RGB')
exif = im.getexif()
exif[0x9286] = meta_prompt
exif[0x9c9c] = meta_prompt.encode('utf16')
exif[0x9c9d] = ('AI art (' + gpu_name + ')' + upscale_text).encode('utf16')
exif[0x0131] = "https://github.com/rbbrdckybk/ai-art-generator"
newfilename = dt.now().strftime('%Y%m-%d%H-%M%S-') + str(nf_count)
nf_count += 1
im.save(os.path.join(fullfilepath, newfilename + ".jpg"), exif=exif, quality=88)
if exists(os.path.join(samples_dir, f)):
os.remove(os.path.join(samples_dir, f))
# remove the /samples dir if empty
try:
os.rmdir(samples_dir)
except OSError as e:
# nothing to do here, we only want to remove the dir
# if it's completely empty
pass
fullfilepath = ""
# save generation details as exif metadata for VQGAN and CLIP-guided diffusion outputs
if exists(fullfilepath):
exec_time = time.time() - start_time
pngImage = PngImageFile(fullfilepath)
# convert to jpg and remove the original png file
im = pngImage.convert('RGB')
exif = im.getexif()
# usercomments
exif[0x9286] = self.command
# comments used by windows
exif[0x9c9c] = self.command.encode('utf16')
# author used by windows
exif[0x9c9d] = gpu_name.encode('utf16')
# software name used by windows
exif[0x0131] = "AI Art (generated in " + str(datetime.timedelta(seconds=round(exec_time))) + ")"
im.save(fullfilepath.replace('.png', '.jpg'), exif=exif, quality=88)
if exists(fullfilepath.replace('.png', '.jpg')):
os.remove(fullfilepath)
with print_lock:
print("Worker done.")
self.callback()
# ESRGAN/GFPGAN upscaling:
# scale - upscale by this amount, default is 2.0x
# dir - upscale all images in this folder
# do_face_enhance - True/False use GFPGAN (for faces)
def upscale(scale, dir, gpu_id, do_face_enhance):
command = "python inference_realesrgan.py -n RealESRGAN_x4plus --suffix u -s "
# check that scale is a valid float, otherwise use default scale of 4
try :
float(scale)
command += str(scale)
except :
command += "2"
# specify gpu
command += " -g " + gpu_id
# append the input/output dir
command += " -i ../" + dir + " -o ../" + dir
# whether to use GFPGAN for faces
if do_face_enhance:
command += " --face_enhance"
cwd = os.getcwd()
print ("Invoking Real-ESRGAN: " + command)
# invoke Real-ESRGAN
if sys.platform == "win32" or os.name == 'nt':
#subprocess.call(shlex.split(command), cwd=(cwd + '\Real-ESRGAN'), stderr=subprocess.DEVNULL)
subprocess.call(shlex.split(command), cwd=(cwd + '\Real-ESRGAN'))
else:
subprocess.call(shlex.split(command), cwd=(cwd + '/Real-ESRGAN'), stderr=subprocess.DEVNULL)
# controller manages worker thread(s) and user input
# TODO change worker_idle to array of bools to manage multiple threads/gpus
class Controller:
def __init__(self, prompt_file):
self.process = PROCESS
self.width = WIDTH
self.height = HEIGHT
self.iterations = ITERATIONS
self.seed = SEED
self.cuda_device = CUDA_DEVICE
self.learning_rate = LEARNING_RATE
self.cuts = CUTS
self.input_image = INPUT_IMAGE
self.skip_steps = SKIP_STEPS
self.transformer = TRANSFORMER
self.clip_model = CLIP_MODEL
self.optimiser = OPTIMISER
self.d_use_vitb32 = D_USE_VITB32
self.d_use_vitb16 = D_USE_VITB16
self.d_use_vitl14 = D_USE_VITL14
self.d_use_rn101 = D_USE_RN101
self.d_use_rn50 = D_USE_RN50
self.d_use_rn50x4 = D_USE_RN50x4
self.d_use_rn50x16 = D_USE_RN50x16
self.d_use_rn50x64 = D_USE_RN50x64
self.steps = STEPS
self.scale = SCALE
self.samples = SAMPLES
self.batch_size = BATCH_SIZE
self.strength = STRENGTH
self.sd_low_memory = SD_LOW_MEMORY
self.sd_low_mem_turbo = SD_LOW_MEM_TURBO
self.use_upscale = USE_UPSCALE
self.upscale_amount = UPSCALE_AMOUNT
self.upscale_face_enh = UPSCALE_FACE_ENH
self.upscale_keep_org = UPSCALE_KEEP_ORG
self.repeat = REPEAT
self.work_queue = deque()
self.work_done = False
self.worker_idle = True
self.is_paused = False
self.jobs_done = 0
# text file containing all of the prompt/style/etc info
self.prompt_file_name = prompt_file
# lists for prompts/styles
self.subjects = list()
self.styles = list()
self.prefixes = list()
self.suffixes = list()
self.__init_lists(self.subjects, "subjects")
self.__init_lists(self.styles, "styles")
self.__init_lists(self.prefixes, "prefixes")
self.__init_lists(self.suffixes, "suffixes")
if sys.platform == "win32" or os.name == 'nt':
#keyboard.on_press_key("f10", lambda _:self.pause_callback())
#keyboard.on_press_key("f9", lambda _:self.exit_callback())
keyboard.add_hotkey("ctrl+shift+p", lambda: self.pause_callback())
keyboard.add_hotkey("ctrl+shift+q", lambda: self.exit_callback())
keyboard.add_hotkey("ctrl+shift+r", lambda: self.reload_callback())
self.init_work_queue()
with print_lock:
print("Queued " + str(len(self.work_queue)) + " work items from " + self.prompt_file_name + ".")
# init the lists
def __init_lists(self, which_list, search_text):
with open(self.prompt_file_name) as f:
lines = f.readlines()
search_header = '[' + search_text + ']'
found_header = False
# find the search text and read until the next search header
for line in lines:
# ignore comments and strip whitespace
line = line.strip().split('#', 1)
line = line[0].strip()
# if we already found the header we want and we see another header, stop
if found_header and len(line) > 0 and line[0] == '[':
break
# found the search header
if search_header.lower() == line.lower():
found_header = True
line = ""
if len(line) > 0 and found_header:
#print(search_header + ": " + line)
which_list.append(line)
# returns a random prefix from the prompt file
def prefix(self):
prefix = ''
if len(self.prefixes) > 0:
x = random.randint(0, len(self.prefixes)-1)
prefix = self.prefixes[x]
return prefix
# returns a random suffix from the prompt file
def suffix(self):
suffix = ''
if len(self.suffixes) > 0:
x = random.randint(0, len(self.suffixes)-1)
suffix = self.suffixes[x]
return suffix
# build a work queue with the specified prompt and style files
def init_work_queue(self):
# construct work queue consisting of all prompt+style combos
for subject in self.subjects:
# if this is a setting directive, handle it
if subject[0] == '!':
self.change_setting(subject)
# otherwise build the command
else:
base = ""
if self.process == "stablediff":
if self.input_image != "":
base = "python scripts_mod/img2img.py"
if self.sd_low_memory.lower() == "yes":
base = "python scripts_mod/optimized_img2img.py"
else:
base = "python scripts_mod/txt2img.py"
if self.sd_low_memory.lower() == "yes":
base = "python scripts_mod/optimized_txt2img.py"
base += " --W " + str(self.width) \
+ " --H " + str(self.height)
# additional common params
if int(self.cuda_device) > 0:
base += " --device \"cuda:" + str(self.cuda_device) + "\""
if self.sd_low_memory.lower() == "yes" and self.sd_low_mem_turbo.lower() == "yes":
base += " --turbo"
base += " --skip_grid" \
+ " --n_iter " + str(self.samples) \
+ " --n_samples " + str(self.batch_size) \
+ " --prompt \""
else:
# vqgan & diffusion shared initial setup
base = "python " + self.process + ".py" \
+ " -s " + str(self.width) + " " + str(self.height) \
+ " -i " + str(self.iterations) \
+ " -cuts " + str(self.cuts) \
+ " -p \""
input_name = self.prompt_file_name.split('/')
input_name = input_name[len(input_name)-1]
input_name = input_name.split('\\')
input_name = input_name[len(input_name)-1]
outdir="output/[[date]]" + '-' + slugify(input_name.split('.', 1)[0])
# quick fix for empty/non-existant styles
if len(self.styles) == 0:
self.styles.append("")
# queue a work item for each style/artist
for style in self.styles:
if self.process == "stablediff":
# order matters more in stable diffusion, get the style in front of suffix
work = base + (self.prefix() + " " + subject + ", " + style.strip() + ", " + self.suffix()).strip() + "\""
else:
base += (self.prefix() + ' ' + subject + ' ' + self.suffix()).strip()
work = base + " | " + style.strip() + "\""
# VQGAN+CLIP -specific params
if self.process == "vqgan":
work += " -lr " + str(self.learning_rate)
if self.transformer != "":
work += " -conf checkpoints/" + self.transformer + ".yaml -ckpt checkpoints/" + self.transformer + ".ckpt"
if self.clip_model != "":
work += " -m " + self.clip_model
if self.optimiser != "":
work += " -opt " + self.optimiser
if self.cuda_device != "":
work += " -cd \"cuda:" + str(self.cuda_device) + "\""
# CLIP-guided diffusion -specific params:
if self.process == "diffusion":
work += " -cd " + str(self.cuda_device)
work += " -dvitb32 " + self.d_use_vitb32
work += " -dvitb16 " + self.d_use_vitb16
work += " -dvitl14 " + self.d_use_vitl14
work += " -drn101 " + self.d_use_rn101
work += " -drn50 " + self.d_use_rn50
work += " -drn50x4 " + self.d_use_rn50x4
work += " -drn50x16 " + self.d_use_rn50x16
work += " -drn50x64 " + self.d_use_rn50x64
seed = random.randint(1, 2**32) - 1000
if int(self.seed) > -1:
seed = int(self.seed)
# Stable Diffusion -specific params:
if self.process == "stablediff":
# Stable Diffusion -specific closing args:
if self.input_image != "":
work += " --init-img \"../" + self.input_image + "\"" + " --strength " + str(self.strength)
work += " --ddim_steps " + str(self.steps) \
+ " --scale " + str(self.scale) \
+ " --seed " + str(seed) \
+ " --outdir ../" + outdir
else:
# vqgan and diffusion -shared closing args:
if self.input_image != "":
work += " -ii \"" + self.input_image + "\""
if self.process == "diffusion" and int(self.skip_steps) > -1:
work += " -ss " + self.skip_steps
name_subj = slugify(subject)
name_subj = re.sub(":[-+]?\d*\.?\d+|[-+]?\d+", "", name_subj)
name_style = slugify(style)
name_style = re.sub(":[-+]?\d*\.?\d+|[-+]?\d+", "", name_style)
if len(name_subj) > (180 - len(name_style)):
x = 180 - len(name_style)
name_subj = name_subj[0:x]
work += " -sd " + str(seed) + " -o " + outdir + "/" + name_subj + '-' + name_style + ".png"
# work args built, add to queue
self.work_queue.append(work)
# handle whatever settings directives that are allowed in the prompt file here
def change_setting(self, setting_string):
ss = re.search('!(.+?)=', setting_string)
if ss:
command = ss.group(1).lower().strip()
value = setting_string.split("=",1)[1].strip()
# python switch
if command == 'process':
if value == '':
value = PROCESS
self.process = value
elif command == 'cuda_device':
if value == '':
value = CUDA_DEVICE
self.cuda_device = value
elif command == 'width':
if value == '':
value = WIDTH
self.width = value
elif command == 'height':
if value == '':
value = HEIGHT
self.height = value
elif command == 'iterations':
if value == '':
value = ITERATIONS
self.iterations = value
elif command == 'seed':
if value == '':
value = SEED
self.seed = value
elif command == 'learning_rate':
if value == '':
value = LEARNING_RATE
self.learning_rate = value
elif command == 'cuts':
if value == '':
value = CUTS
self.cuts = value
elif command == 'input_image':
self.input_image = value
elif command == 'skip_steps':
if value == '':
value = SKIP_STEPS
self.skip_steps = value
elif command == 'transformer':
if value == 'vqgan_imagenet_f16_16384':
value = ''
self.transformer = value
elif command == 'clip_model':
self.clip_model = value
elif command == 'optimiser':
self.optimiser = value
elif command == 'd_vitb32':
self.d_use_vitb32 = value
elif command == 'd_vitb16':
self.d_use_vitb16 = value
elif command == 'd_vitl14':
self.d_use_vitl14 = value
elif command == 'd_rn101':
self.d_use_rn101 = value
elif command == 'd_rn50':
self.d_use_rn50 = value
elif command == 'd_rn50x4':
self.d_use_rn50x4 = value
elif command == 'd_rn50x16':
self.d_use_rn50x16 = value
elif command == 'd_rn50x64':
self.d_use_rn50x64 = value
elif command == 'steps':
if value == '':
value = STEPS
self.steps = value
elif command == 'scale':
if value == '':
value = SCALE
self.scale = value
elif command == 'samples':
if value == '':
value = SAMPLES
self.samples = value
elif command == 'batch_size':
if value == '':
value = BATCH_SIZE
self.batch_size = value
elif command == 'strength':
if value == '':
value = STRENGTH
self.strength = value
elif command == 'sd_low_memory':
if value == '':
value = SD_LOW_MEMORY
self.sd_low_memory = value
elif command == 'sd_low_mem_turbo':
if value == '':
value = SD_LOW_MEM_TURBO
self.sd_low_mem_turbo = value
elif command == 'use_upscale':
if value == '':
value = USE_UPSCALE
self.use_upscale = value
elif command == 'upscale_amount':
if value == '':
value = UPSCALE_AMOUNT
self.upscale_amount = value
elif command == 'upscale_face_enh':
if value == '':
value = UPSCALE_FACE_ENH
self.upscale_face_enh = value
elif command == 'upscale_keep_org':
if value == '':
value = UPSCALE_KEEP_ORG
self.upscale_keep_org = value
elif command == 'repeat':
if value == '':
value = REPEAT
self.repeat = value
else:
print("\n*** WARNING: prompt file command not recognized: " + command.upper() + " (it will be ignored!) ***\n")
time.sleep(1.5)
# start a new worker thread
def do_work(self, command):
self.worker_idle = False
with print_lock:
print("\n\nWorker starting job #" + str(self.jobs_done+1) + ":")
thread = Worker(command, \
self.use_upscale, \
self.upscale_amount, \
self.upscale_face_enh, \
self.upscale_keep_org, \
self.on_work_done)
thread.start()
# callback for worker threads when finished
def on_work_done(self):
self.worker_idle = True
self.jobs_done += 1
# pause execution at user request
def pause_callback(self):
self.is_paused = not self.is_paused
if self.is_paused:
with print_lock:
print("\n\n*** Work will be paused when current operation finishes! ***")
print("*** (press 'CTRL+SHIFT+P' again to unpause, or 'CTRL+SHIFT+Q' to quit) ***\n")
else:
with print_lock:
print("\n*** Work resuming! ***\n")
# allow exit at user request if currently paused
def exit_callback(self):
if self.is_paused:
print("Exiting...")
self.work_done = True
# discards the current work queue and re-builds it from the prompt file
# useful if the file has changed and the user wants to reload it
def reload_callback(self):
with print_lock:
print("\n\n*** Discarding current work queue and re-building! ***")
self.work_queue = deque()
self.subjects = list()
self.styles = list()
self.prefixes = list()
self.suffixes = list()
self.__init_lists(self.subjects, "subjects")
self.__init_lists(self.styles, "styles")
self.__init_lists(self.prefixes, "prefixes")
self.__init_lists(self.suffixes, "suffixes")
self.init_work_queue()
with print_lock:
print("*** Queued " + str(len(self.work_queue)) + " work items from " + self.prompt_file_name + "! ***")
# for easy reading of prompt/style files
class TextFile():
def __init__(self, filename):
self.lines = deque()
with open(filename) as f:
l = f.readlines()
for x in l:
x = x.strip();
if x != "" and x[0] != '#':
# these lines are actual prompts
x = x.strip('\n')
self.lines.append(x)
def next_line(self):
return self.lines.popleft()
def lines_remaining(self):
return len(self.lines)
# Taken from https://github.com/django/django/blob/master/django/utils/text.py
# Using here to make filesystem-safe directory names
def slugify(value, allow_unicode=False):
value = str(value)
if allow_unicode:
value = unicodedata.normalize('NFKC', value)
else:
value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
value = re.sub(r'[^\w\s-]', '', value.lower())
value = re.sub(r'[-\s]+', '-', value).strip('-_')
# added in case of very long filenames due to multiple prompts
return value[0:180]
# entry point
if __name__ == '__main__':
if len(sys.argv) > 1:
prompt_filename = sys.argv[1]
if not exists(prompt_filename):
print("\nThe specified prompt file '" + prompt_filename + "' doesn't exist!")
print("Please specify a valid text file containing your prompt information.")
exit()
control = Controller(prompt_filename)
passes = 0
# main work loop
while not control.work_done:
# worker is idle, start some work
if (control.worker_idle and not control.is_paused):
if len(control.work_queue) > 0:
# get a new prompt or setting directive from the queue
new_work = control.work_queue.popleft()
control.do_work(new_work)
else:
# no more prompts to work on
passes += 1
if (passes > 1):
print('\nAll work done (completed ' + str(passes) + ' runs through prompt file)!')
else:
print('\nAll work done!')
if control.repeat.lower() == 'yes':
print('Restarting from top of prompt file!')
control = Controller(prompt_filename)
else:
control.work_done = True
else:
time.sleep(.01)
else:
print("\nUsage: python make_art.py [prompt file]")
print("Example: python make_art.py prompts.txt")
exit()
if control and control.jobs_done > 0:
print("Total jobs done: " + str(control.jobs_done))
exit()