forked from DeepLabCut/DeepLabCut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestscript_mobilenets.py
292 lines (258 loc) · 8.91 KB
/
testscript_mobilenets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# DeepLabCut Toolbox (deeplabcut.org)
# © A. & M.W. Mathis Labs
# https://github.com/DeepLabCut/DeepLabCut
#
# Please see AUTHORS for contributors.
# https://github.com/DeepLabCut/DeepLabCut/blob/master/AUTHORS
#
# Licensed under GNU Lesser General Public License v3.0
#
"""
Created on Tue Oct 2 13:56:11 2018
@author: alex
DEVELOPERS:
This script tests various functionalities (creating project ,training, evaluating, outlierextraction, retraining...) in an automatic way.
For that purpose, it trains ResNet and MobileNet briefly on a "fake" dataset.
It should take about 4:15 minutes to run this in a CPU. (incl. downloading the ResNet + MobileNet weights)
It produces nothing of interest scientifically.
"""
import os
os.environ["DLClight"] = "True"
import deeplabcut
from pathlib import Path
import pandas as pd
import numpy as np
def Cuttrainingschedule(
path_config_file, shuffle, trainingsetindex=0, initweights="imagenet", lastvalue=10
):
cfg = deeplabcut.auxiliaryfunctions.read_config(path_config_file)
posefile = os.path.join(
cfg["project_path"],
"dlc-models/iteration-"
+ str(cfg["iteration"])
+ "/"
+ cfg["Task"]
+ cfg["date"]
+ "-trainset"
+ str(int(cfg["TrainingFraction"][trainingsetindex] * 100))
+ "shuffle"
+ str(shuffle),
"train/pose_cfg.yaml",
)
edits = {
"save_iters": lastvalue,
"display_iters": 1,
"multi_step": [[0.001, lastvalue]],
"intermediate_supervision": False,
}
if initweights == "previteration":
edits["init_weights"] = os.path.join(
cfg["project_path"],
"dlc-models/iteration-"
+ str(cfg["iteration"] - 1)
+ "/"
+ cfg["Task"]
+ cfg["date"]
+ "-trainset"
+ str(int(cfg["TrainingFraction"][trainingsetindex] * 100))
+ "shuffle"
+ str(shuffle),
"train/snapshot-" + str(lastvalue),
)
print("CHANGING training parameters to end quickly!")
DLC_config = deeplabcut.auxiliaryfunctions.edit_config(posefile, edits)
return
if __name__ == "__main__":
task = "TEST-multipleNets" # Enter the name of your experiment Task
scorer = "Alex" # Enter the name of the experimenter/labeler
print("Imported DLC!")
basepath = os.path.dirname(os.path.realpath(__file__))
videoname = "reachingvideo1"
video = [
os.path.join(
basepath, "Reaching-Mackenzie-2018-08-30", "videos", videoname + ".avi"
)
]
# to test destination folder:
dfolder = os.path.join(basepath, "OUT")
deeplabcut.auxiliaryfunctions.attempt_to_make_folder(dfolder)
# dfolder=None
augmenter_type = "tensorpack" # imgaug'
print("CREATING PROJECT")
path_config_file = deeplabcut.create_new_project(
task, scorer, video, copy_videos=True
)
cfg = deeplabcut.auxiliaryfunctions.read_config(path_config_file)
cfg["numframes2pick"] = 5
cfg["pcutoff"] = 0.01
cfg["TrainingFraction"] = [0.8]
cfg["skeleton"] = [["bodypart1", "bodypart2"], ["bodypart1", "bodypart3"]]
deeplabcut.auxiliaryfunctions.write_config(path_config_file, cfg)
print("EXTRACTING FRAMES")
deeplabcut.extract_frames(path_config_file, mode="automatic", userfeedback=False)
print("CREATING-SOME LABELS FOR THE FRAMES")
frames = os.listdir(os.path.join(cfg["project_path"], "labeled-data", videoname))
# As this next step is manual, we update the labels by putting them on the diagonal (fixed for all frames)
for index, bodypart in enumerate(cfg["bodyparts"]):
columnindex = pd.MultiIndex.from_product(
[[scorer], [bodypart], ["x", "y"]], names=["scorer", "bodyparts", "coords"]
)
frame = pd.DataFrame(
100 + np.ones((len(frames), 2)) * 50 * index,
columns=columnindex,
index=[os.path.join("labeled-data", videoname, fn) for fn in frames],
)
if index == 0:
dataFrame = frame
else:
dataFrame = pd.concat([dataFrame, frame], axis=1)
dataFrame.to_csv(
os.path.join(
cfg["project_path"],
"labeled-data",
videoname,
"CollectedData_" + scorer + ".csv",
)
)
dataFrame.to_hdf(
os.path.join(
cfg["project_path"],
"labeled-data",
videoname,
"CollectedData_" + scorer + ".h5",
),
"df_with_missing",
format="table",
mode="w",
)
stoptrain = 5 # 0
keepdeconvweights = True
print("Plot labels...")
deeplabcut.check_labels(path_config_file)
for shuffle, net_type in enumerate(
["mobilenet_v2_0.35", "resnet_50"]
): #'mobilenet_v2_1.0']): # 'resnet_50']):
"""
if shuffle==0:
keepdeconvweights=True
else:
keepdeconvweights=False
"""
print("CREATING TRAININGSET", net_type)
if "resnet_50" == net_type: # this tests the default condition...
deeplabcut.create_training_dataset(
path_config_file, Shuffles=[shuffle], augmenter_type=augmenter_type
)
else:
deeplabcut.create_training_dataset(
path_config_file,
Shuffles=[shuffle],
net_type=net_type,
augmenter_type=augmenter_type,
)
Cuttrainingschedule(path_config_file, shuffle, lastvalue=stoptrain)
print("TRAIN")
deeplabcut.train_network(path_config_file, shuffle=shuffle)
print("EVALUATE")
deeplabcut.evaluate_network(path_config_file, Shuffles=[shuffle], plotting=True)
print("CREATE A SHORT VIDEO AND ANALYZE")
if shuffle == 0:
# Make super short video (so the analysis is quick!)
newvideo = deeplabcut.ShortenVideo(
video[0],
start="00:00:00",
stop="00:00:01",
outsuffix="short",
outpath=os.path.join(cfg["project_path"], "videos"),
)
vname = Path(newvideo).stem
deeplabcut.analyze_videos(
path_config_file,
[newvideo],
shuffle=shuffle,
save_as_csv=True,
destfolder=dfolder,
videotype="avi",
)
print("CREATE VIDEO")
deeplabcut.create_labeled_video(
path_config_file,
[newvideo],
shuffle=shuffle,
destfolder=dfolder,
videotype="avi",
)
print("Making plots")
deeplabcut.plot_trajectories(
path_config_file,
[newvideo],
shuffle=shuffle,
destfolder=dfolder,
videotype="avi",
)
print("EXTRACT OUTLIERS")
deeplabcut.extract_outlier_frames(
path_config_file,
[newvideo],
shuffle=shuffle,
outlieralgorithm="jump",
epsilon=0,
automatic=True,
destfolder=dfolder,
videotype="avi",
)
file = os.path.join(
cfg["project_path"],
"labeled-data",
vname,
"machinelabels-iter" + str(cfg["iteration"]) + ".h5",
)
print("RELABELING")
DF = pd.read_hdf(file, "df_with_missing")
DLCscorer = np.unique(DF.columns.get_level_values(0))[0]
DF.columns.set_levels(
[scorer.replace(DLCscorer, scorer)], level=0, inplace=True
)
DF = DF.drop("likelihood", axis=1, level=2)
DF.to_csv(
os.path.join(
cfg["project_path"],
"labeled-data",
vname,
"CollectedData_" + scorer + ".csv",
)
)
DF.to_hdf(
os.path.join(
cfg["project_path"],
"labeled-data",
vname,
"CollectedData_" + scorer + ".h5",
),
"df_with_missing",
format="table",
mode="w",
)
print("MERGING")
deeplabcut.merge_datasets(path_config_file)
print("CREATING TRAININGSET")
deeplabcut.create_training_dataset(
path_config_file, Shuffles=[shuffle], net_type=net_type
)
Cuttrainingschedule(
path_config_file, shuffle, lastvalue=stoptrain, initweights="previteration"
)
print("TRAINING from previous snapshot!!!!!")
deeplabcut.train_network(
path_config_file, shuffle=shuffle, keepdeconvweights=keepdeconvweights
)
print("ANALYZING some individual frames")
deeplabcut.analyze_time_lapse_frames(
path_config_file,
os.path.join(cfg["project_path"], "labeled-data/reachingvideo1/"),
shuffle=shuffle,
)
print("ALL DONE!!! - Mobilnets and ResNets are good!")